12.△ABC中,角A、B、C所對的邊分別是a、b、c,若a=2,b=3,$c=\sqrt{5}$,則cosC=( 。
A.$\frac{2}{3}$B.$\frac{2}{5}$C.$\frac{3}{5}$D.$\frac{4}{5}$

分析 直接利用余弦定理化簡求解即可.

解答 解:△ABC中,角A、B、C所對的邊分別是a、b、c,若a=2,b=3,$c=\sqrt{5}$,
則cosC=$\frac{{a}^{2}+^{2}-{c}^{2}}{2ab}$=$\frac{4+9-5}{2×2×3}$=$\frac{2}{3}$.
故選:A.

點(diǎn)評 本題考查余弦定理的應(yīng)用,考查計算能力.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

2.若M為拋物線y=2x2第一象限上的點(diǎn),且M到焦點(diǎn)的距離為$\frac{1}{4}$,則M的坐標(biāo)為$({\frac{1}{4},\frac{1}{8}})$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

3.設(shè)向量$\overrightarrow a$,$\overrightarrow b$不共線,$(λ\overrightarrow a+\overrightarrow{b)}$與($\overrightarrow a$+$2\overrightarrow b$)共線,則實數(shù)λ的值為$\frac{1}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

20.已知f(x)是定義在R上的偶函數(shù),在[0,+∞)上單調(diào)增,且f(2)=1,則滿足f(x-1)>1的x的取值范圍是(-∞,-1)∪(3,+∞).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

7.已知函數(shù)f(x)=$\frac{{2}^{x}-a•{2}^{x}}{{2}^{x}+{2}^{-x}}$是定義R在上的奇函數(shù).
(1)求實數(shù)a的值,并求函數(shù)f(x)的值域;
(2)設(shè)g(x)=(2x+2-x)•f(x).
(ⅰ)判斷函數(shù)y=g(x)的單調(diào)性(不需要說明理由),并求使不等式g(x2+tx)+g(4-x)>0對x∈R恒成立的實數(shù)t的取值范圍;
(ⅱ)設(shè)h(x)=22x+2-2x-2m•g(x)且h(x)在[1,+∞)上的最小值為-2,求實數(shù)m的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

17.已知$\overrightarrow a=(2,4),\overrightarrow b=(x,-2),且\overrightarrow a∥\overrightarrow b$,則x=-1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.如圖,是四個可以自由轉(zhuǎn)動的轉(zhuǎn)盤,轉(zhuǎn)盤被平均分成若干個扇形,轉(zhuǎn)動轉(zhuǎn)盤,轉(zhuǎn)盤停止后,有兩個轉(zhuǎn)盤的指針指向白色區(qū)域的概率相同,則這兩個轉(zhuǎn)盤是(  )
A.轉(zhuǎn)盤1和轉(zhuǎn)盤2B.轉(zhuǎn)盤2和轉(zhuǎn)盤3C.轉(zhuǎn)盤2和轉(zhuǎn)盤4D.轉(zhuǎn)盤3和轉(zhuǎn)盤4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

1.若向量$\overrightarrow{a}$、$\overrightarrow$ 滿足|$\overrightarrow{a}$|=$\sqrt{2}$,|$\overrightarrow$|=1,$\overrightarrow{a}•\overrightarrow$=-1,則向量$\overrightarrow{a}$、$\overrightarrow$ 的夾角的大小為$\frac{3π}{4}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.已知函數(shù)f(x)=$\left\{\begin{array}{l}{{2}^{x}-1(0≤x≤1)}\\{f(x-1)+m(x>1)}\end{array}\right.$在定義域[0,+∞)上單調(diào)遞增,且對于任意a≥0,方程f(x)=a有且只有一個實數(shù)解,則函數(shù)g(x)=f(x)-x在區(qū)間[0,2n](n∈N*)上所有零點(diǎn)的和為( 。
A.$\frac{n(n+1)}{2}$B.22n-1+2n-1C.$\frac{(1+{2}^{n})^{2}}{2}$D.2n-1

查看答案和解析>>

同步練習(xí)冊答案