【題目】如圖,在三棱柱中,平面,,,的中點(diǎn)為.
(Ⅰ)求證:;
(Ⅱ)求二面角的余弦值;
(Ⅲ)在棱上是否存在點(diǎn),使得平面?若存在,求出的值;若不存在,請說明理由.
【答案】(Ⅰ)詳見解析;(Ⅱ);(Ⅲ)在棱上存在點(diǎn),使得平面,且.
【解析】
(Ⅰ)可證明平面,從而得到.
(Ⅱ)利用,,兩兩互相垂直建立如圖所示空間直角坐標(biāo)系,求出平面的法向量平面的法向量后可求二面角的余弦值.
(Ⅲ)設(shè),則可用表示,利用與平面的法向量垂直可求,從而得到的值.
證明:(Ⅰ)因?yàn)?/span>平面,平面,所以.
因?yàn)?/span>,所以.
又因?yàn)?/span>,
所以平面.
因?yàn)?/span>平面,所以.
(Ⅱ)由(Ⅰ)可知,,兩兩互相垂直,
如圖,建立空間直角坐標(biāo)系.
因?yàn)?/span>,
所以,,,.
因?yàn)?/span>平面,
所以即為平面的一個法向量.
設(shè)平面的一個法向量為,
,,
則 即
令,則.
于是.
所以.
由題知二面角為銳角,所以其余弦值為.
(Ⅲ)假設(shè)棱上存在點(diǎn),使得平面.
由,得.
因?yàn)?/span>,為的中點(diǎn),所以.
所以.
若平面,則,解得.
又因?yàn)?/span>平面.
所以在棱上存在點(diǎn),使得平面,且.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知是奇函數(shù)(其中,)
(1)求的值;
(2)討論的單調(diào)性;
(3)當(dāng)的定義域區(qū)間為時,的值域?yàn)?/span>,求的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖一塊長方形區(qū)域,,,在邊的中點(diǎn)處有一個可轉(zhuǎn)動的探照燈,其照射角始終為,設(shè),探照燈照射在長方形內(nèi)部區(qū)域的面積為.
(1)當(dāng)時,求關(guān)于的函數(shù)關(guān)系式;
(2)當(dāng)時,求的最大值;
(3)若探照燈每9分鐘旋轉(zhuǎn)“一個來回”(自轉(zhuǎn)到,再回到,稱“一個來回”,忽略在及處所用的時間),且轉(zhuǎn)動的角速度大小一定,設(shè)邊上有一點(diǎn),且,求點(diǎn)在“一個來回”中被照到的時間.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓的焦點(diǎn)和上頂點(diǎn)分別為,定義:為橢圓的“特征三角形”,如果兩個橢圓的特征三角形是相似三角形,那么稱這兩個橢圓為“相似橢圓”,且特征三角形的相似比即為相似橢圓的相似比,已知點(diǎn)是橢圓的一個焦點(diǎn),且上任意一點(diǎn)到它的兩焦點(diǎn)的距離之和為4
(1)若橢圓與橢圓相似,且與的相似比為2:1,求橢圓的方程.
(2)已知點(diǎn)是橢圓上的任意一點(diǎn),若點(diǎn)是直線與拋物線異于原點(diǎn)的交點(diǎn),證明:點(diǎn)一定在雙曲線上.
(3)已知直線,與橢圓相似且短半軸長為的橢圓為,是否存在正方形,(設(shè)其面積為),使得在直線上,在曲線上?若存在,求出函數(shù)的解析式及定義域;若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】若實(shí)數(shù)x,y滿足x2-4xy+4y2+4x2y2=4,則當(dāng)x+2y取得最大值時,的值為________.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在新中國成立70周年國慶閱兵慶典中,眾多群眾在臉上貼著一顆紅心,以此表達(dá)對祖國的熱愛之情,在數(shù)學(xué)中,有多種方程都可以表示心型曲線,其中有著名的笛卡爾心型曲線,如圖,在直角坐標(biāo)系中,以原點(diǎn)O為極點(diǎn),x軸正半軸為極軸建立極坐標(biāo)系.圖中的曲線就是笛卡爾心型曲線,其極坐標(biāo)方程為(),M為該曲線上的任意一點(diǎn).
(1)當(dāng)時,求M點(diǎn)的極坐標(biāo);
(2)將射線OM繞原點(diǎn)O逆時針旋轉(zhuǎn)與該曲線相交于點(diǎn)N,求的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù),
(1)當(dāng)時,求的單調(diào)區(qū)間;
(2)當(dāng),討論的零點(diǎn)個數(shù);
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com