【題目】已知函數(shù).

(1)當(dāng)時,求函數(shù)的極值;

(2)當(dāng)時,討論函數(shù)的單調(diào)性;

(3)若對任意的,恒有成立,求實數(shù)的取值范圍.

【答案】(1)有極小值是,無極大值.(2)見解析;(3)

【解析】

(1)利用導(dǎo)數(shù)先求函數(shù)的單調(diào)性,再求函數(shù)的極值.(2)a分類討論,利用導(dǎo)數(shù)求函數(shù)的單調(diào)性.(3)先轉(zhuǎn)化命題,對任意,恒有成立,再分離參數(shù)得,因為,所以只需 ,求出t的范圍.

當(dāng)時,函數(shù)的定義域為

函數(shù)在區(qū)間上是減函數(shù),在區(qū)間上是增函數(shù)

函數(shù)有極小值是,無極大值.

,

當(dāng)時,有,函數(shù)在定義域內(nèi)單調(diào)遞減;

當(dāng)時,在區(qū)間,,單調(diào)遞減;

在區(qū)間,單調(diào)遞增;

當(dāng)時,在區(qū)間單調(diào)遞減;

在區(qū)間單調(diào)遞增;

知當(dāng)時,在區(qū)間上單調(diào)遞減,

所以

問題等價于:

對任意,恒有成立,

,因為,所以,因為,

所以只需

從而

的取值范圍是

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】拋擲一個質(zhì)地均勻的骰子的試驗,事件A表示“小于5的偶數(shù)點出現(xiàn)”,事件B表示“不小于5的點數(shù)出現(xiàn)”,則一次試驗中,事件A或事件B至少有一個發(fā)生的概率為(

A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在直角坐標(biāo)系中,以坐標(biāo)原點為極點,軸的非負(fù)半軸為極軸建立極坐標(biāo)系.己知

的極坐標(biāo)為,曲線的極坐標(biāo)方程為,曲線的參數(shù)方程為,為參數(shù)).曲線和曲線相交于兩點.

(1)求點的直角坐標(biāo);

(2)求曲線的直角坐標(biāo)方程和曲線的普通方程;

(3)求的面枳,

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】,.

1)若是增函數(shù),求實數(shù)a的范圍;

2)若上最小值為3,求實數(shù)a的值;

3)若時恒成立,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】有甲、乙兩家公司都需要招聘求職者,這兩家公司的聘用信息如下:

甲公司

乙公司

職位

A

B

C

D

職位

A

B

C

D

月薪/元

6000

7000

8000

9000

月薪/元

5000

7000

9000

11000

獲得相應(yīng)職位概率

0.4

0.3

0.2

0.1

獲得相應(yīng)職位概率

0.4

0.3

0.2

0.1

(1)根據(jù)以上信息,如果你是該求職者,你會選擇哪一家公司?說明理由;

(2)某課外實習(xí)作業(yè)小組調(diào)查了1000名職場人士,就選擇這兩家公司的意愿做了統(tǒng)計,得到以下數(shù)據(jù)分布:

選擇意愿

人員結(jié)構(gòu)

40歲以上(含40歲)男性

40歲以上(含40歲)女性

40歲以下男性

40歲以下女性

選擇甲公司

110

120

140

80

選擇乙公司

150

90

200

110

若分析選擇意愿與年齡這兩個分類變量,計算得到的K2的觀測值為k15.5513,測得出選擇意愿與年齡有關(guān)系的結(jié)論犯錯誤的概率的上限是多少?并用統(tǒng)計學(xué)知識分析,選擇意愿與年齡變量和性別變量哪一個關(guān)聯(lián)性更大?

附:

0.050

0.025

0.010

0.005

3.841

5.024

6.635

7.879

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知定點A(1,0),F(2,0),定直線lx,不在x軸上的動點P與點F的距離是它到直線l的距離的2.設(shè)點P的軌跡為E,過點F的直線交EB、C兩點,直線AB、AC分別交l于點MN

)求E的方程;

)試判斷以線段MN為直徑的圓是否過點F,并說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在五面體中,四邊形是邊長為的正方形,平面⊥平面, .

(Ⅰ) 求證:;

(Ⅱ) 求證:平面⊥平面;

(Ⅲ) 在線段上是否存在點,使得⊥平面? 說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓的離心率,是橢圓上一點.

1)求橢圓的方程;

2)若直線的斜率為,且直線交橢圓、兩點,點關(guān)于原點的對稱點為,點是橢圓上一點,判斷直線的斜率之和是否為定值,如果是,請求出此定值,如果不是,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)集合是集合…,的子集.記中所有元素的和為(規(guī)定:為空集時,=0).若3的整數(shù)倍,則稱的“和諧子集”.

求:(1)集合的“和諧子集”的個數(shù);

2)集合的“和諧子集”的個數(shù).

查看答案和解析>>

同步練習(xí)冊答案