【題目】已知函數(shù)f(x)=ax3-3ax,g(x)=bx2+clnx,且g(x)在點(1,g(1))處的切線方程為2y-1=0.
(1)求g(x)的解析式;
(2)設(shè)函數(shù)G(x)=若方程G(x)=a2有且僅有四個解,求實數(shù)a的取值范圍.
【答案】(1)g(x)=x2-lnx(2)
【解析】(1)g′(x)=2bx+ 由條件,得即∴b=,c=-1,
∴g(x)=x2-lnx.
(2)G(x)=
當x>0時,G(x)=g(x)=x2-lnx,g′(x)=x-=.
令g′(x)=0,得x=1,且當x∈(0,1),g′(x)<0,x∈(1,+∞),g′(x)>0,
∴g(x)在(0,+∞)上有極小值,即最小值為g(1)=.
當x≤0時,G(x)=f(x)=ax3-3ax,f′(x)=3ax2-3a=3a(x+1)(x-1).
令f′(x)=0,得x=-1.①若a=0,方程G(x)=a2不可能有四個解;
②若a<0時,當x∈(-∞,-1),f′(x)<0,當x∈(-1,0),f′(x)>0,∴f(x)在(-∞,0]上有極小值,即最小值為f(-1)=2a.又f(0)=0,∴G(x)的圖象如圖①所示,從圖象可以看出方程G(x)=a2不可能有四個解;
,①) ,②)
③若a>0時,當x∈(-∞,-1),f′(x)>0,當x∈(-1,0),f′(x)<0,∴f(x)在(-∞,0]上有極大值,即最大值為f(-1)=2a.又f(0)=0,∴G(x)的圖象如圖②所示.從圖象可以看出方程G(x)=a2若有四個解,必須<a2<2a,∴<a<2.綜上所述,滿足條件的實數(shù)a的取值范圍是
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖所示, 是海面上一條南北方向的海防警戒線,在 上點 處有一個水聲監(jiān)測點,另兩個監(jiān)測點 分別在 的正東方向 處和 處.某時刻,監(jiān)測點 收到發(fā)自目標 的一個聲波, 后監(jiān)測點 后監(jiān)測點 相繼收到這一信號,在當時的氣象條件下,聲波在水中的傳播速度是 .
(1)設(shè) 到 的距離為 ,用 分別表示 到 的距離,并求 的值;
(2)求目標 的海防警戒線 的距離(精確到 ).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)函數(shù)(,且)是定義域為R的奇函數(shù).
(1)求t的值;
(2)若,求使不等式對一切恒成立的實數(shù)k的取值范圍;
(3)若函數(shù)的圖象過點,是否存在正數(shù)m(),使函數(shù)在上的最大值為0,若存在,求出m的值;若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】山東省于2015年設(shè)立了水下考古研究中心,以此推動全省的水下考古、水下文化遺產(chǎn)保護等工作;水下考古研究中心工作站,分別設(shè)在位于劉公島的中國甲午戰(zhàn)爭博物院和威海市博物館。為對劉公島周邊海域水底情況進行詳細了解,然后再選擇合適的時機下水探摸、打撈,省水下考古中心在一次水下考古活動中,某一潛水員需潛水米到水底進行考古作業(yè),其用氧量包含以下三個方面:
①下潛平均速度為米/分鐘,每分鐘的用氧量為升;
②水底作業(yè)時間范圍是最少10分鐘最多20分鐘,每分鐘用氧量為0.4升;
③返回水面時,平均速度為米/分鐘,每分鐘用氧量為0.32升.
潛水員在此次考古活動中的總用氧量為升.
(Ⅰ)如果水底作業(yè)時間是分鐘,將表示為的函數(shù);
(Ⅱ)若,水底作業(yè)時間為20分鐘,求總用氧量的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,棱長為1的正方體中,點P是線段上的動點.當在平面,平面,平面ABCD上的正投影都為三角形時,將它們的面積分別記為,,.
(1)當時,________(用“>”或“=”或“<”填空);
(2)的最大值為________.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù).
(1)當時,求函數(shù)的圖像在出的切線方程;
(2)判斷函數(shù)的單調(diào)性;
(3)證明:.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】從某網(wǎng)站的程序員中隨機抽取名統(tǒng)計其年齡數(shù)據(jù)如下表:
年齡 | 23 | 26 | 27 | 30 | 32 | 34 | 38 |
人數(shù) | 1 | 3 | 3 | 5 | 4 | 3 | 1 |
(1)求這名程序員的平均年齡及年齡的眾數(shù)、中位數(shù);
(2)若這名程序員中年齡不超過歲,且學(xué)歷是研究生及其以上有人,歲以上且學(xué)歷是本科及其以下有人,完成下面的列聯(lián)表,并判斷是否有%的把握認為該網(wǎng)站程序員的學(xué)歷與年齡有關(guān).
年齡≤30 | 年齡>30 | |
學(xué)歷研究生及其以上 | ||
學(xué)歷本科及其以下 |
附:
0.15 | 0.10 | 0.05 | 0.025 | 0.01 | 0.005 | 0.001 | |
2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知點P是拋物線C:上任意一點,過點P作直線PH⊥x軸,點H為垂足.點M是直線PH上一點,且在拋物線的內(nèi)部,直線l過點M交拋物線C于A、B兩點,且點M是線段AB的中點.
(1)證明:直線l平行于拋物線C在點P處切線;
(2)若|PM|=, 當點P在拋物線C上運動時,△PAB的面積如何變化?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,橢圓的左焦點為,過點的直線交橢圓于,兩點,的最大值是,的最小值是,且滿足.
(1)求橢圓的離心率;
(2)設(shè)線段的中點為,線段的垂直平分線與軸、軸分別交于,兩點,是坐標原點,記的面積為,的面積為,求的取值范圍.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com