下列命題中正確命題的序號是:________
①兩條直線a,b和兩條異面直線m,n相交,則直線a,b一定異面;
②?α,β∈R,使cos(α+β)=cosα+cosβ;
③?x>0,都有l(wèi)n6x+ln3x+1>0;
④?m∈R,使數(shù)學(xué)公式是冪函數(shù),且在(0,+∞)上遞減;
⑤??∈R,函數(shù)y=sin(2x+?)都不是偶函數(shù).

②③④
分析:①利用異面直線的意義即可判斷出;
②取α=-,即可;
③通過配方即可判斷出;
④取m=2即可;
⑤取Φ=即可否定.
解答:①兩條直線a,b和兩條異面直線m,n相交,則直線a,b可能相交或異面,但是一定不平行,故不正確;
②取α=-,,則滿足cos(α+β)=cosα+cosβ,故正確;
③∵?x>0,都有l(wèi)n6x+ln3x+1=>0,因此成立;
④當(dāng)m=2時(shí),f(x)=是冪函數(shù),且在(0,+∞)上遞減,因此正確;
⑤取Φ=時(shí),函數(shù)y=sin(2x+)=cos2x是偶函數(shù),故⑤不正確.
綜上可知:正確答案為②③④.
故答案為②③④.
點(diǎn)評:熟練掌握異面直線的定義、三角函數(shù)的奇偶性與單調(diào)性、配方法及冪函數(shù)的定義及性質(zhì)是解題的關(guān)鍵.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)函數(shù)f(x)=-3x|x|+bx+c,則下列命題中正確命題的序號是
②③⑤
②③⑤

①當(dāng)b<0時(shí),f(x)在R上有最大值;
②函數(shù)f(x)的圖象關(guān)于點(diǎn)(0,c)對稱;
③方程f(x)=0可能有3個(gè)實(shí)根;
④存在b,c的值,使f(x)為偶函數(shù);
⑤一定存在實(shí)數(shù)a,使f(x)在[a,+∞)上單調(diào)遞減.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2013•內(nèi)江一模)設(shè)函數(shù)f(x)=|x|x+bx+c,則下列命題中正確命題的序號有
(2)(3)(4)
(2)(3)(4)

(1)函數(shù)f(x)在R上有最小值;
(2)當(dāng)b>0時(shí),函數(shù)在R上是單調(diào)增函數(shù);
(3)函數(shù)f(x)的圖象關(guān)于點(diǎn)(0,c)對稱;
(4)當(dāng)b<0時(shí),方程f(x)=0有三個(gè)不同實(shí)數(shù)根的充要重要條件是b2>4|c|;
(5)方程f(x)=0可能有四個(gè)不同實(shí)數(shù)根.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2013•內(nèi)江一模)設(shè)函數(shù)f(x)=|x|x+bx+c,則下列命題中正確命題的序號有
(2)(3)
(2)(3)

(1)函數(shù)f(x)在R上有最小值;
(2)當(dāng)b>0時(shí),函數(shù)f(x)在R上是單調(diào)增函數(shù);
(3)函數(shù)f(x)的圖象關(guān)于點(diǎn)(0,c)對稱;
(4)方程f(x)=0可能有四個(gè)不同實(shí)數(shù)根.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2015屆遼寧省錦州市高一12月月考數(shù)學(xué)試卷(解析版) 題型:選擇題

下列命題中正確命題的個(gè)數(shù)是(   )

⑴ 三點(diǎn)確定一個(gè)平面;  ⑵ 若點(diǎn)P不在平面內(nèi),A、B、C三點(diǎn)都在平面內(nèi),則P、A、B、C四點(diǎn)不在同一平面內(nèi);  ⑶ 兩兩相交的三條直線在同一平面內(nèi);  ⑷ 兩組對邊分別相等的四邊形是平行四邊形。

A.0          B.1          C.2             D.3

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2014屆吉林油田高中高一第二學(xué)期期中考試數(shù)學(xué)試卷(解析版) 題型:填空題

下列命題中正確命題的序號是                    .(把你認(rèn)為正確的序號都填上) 

①存在實(shí)數(shù),使;②若是第一象限角,且,則

③函數(shù)是偶函數(shù); ④函數(shù)的圖象向左平移個(gè)單位,得到函

數(shù)的圖象.

 

查看答案和解析>>

同步練習(xí)冊答案