10.計算$\frac{lo{g}_{3}2}{lo{g}_{27}64}$.

分析 根據(jù)換底公式和對數(shù)的運算性質(zhì)即可求出.

解答 解:$\frac{lo{g}_{3}2}{lo{g}_{27}64}$=$\frac{lg2}{lg3}$÷$\frac{lg64}{lg27}$=$\frac{lg2}{lg3}$×$\frac{3lg3}{6lg2}$=$\frac{1}{2}$.

點評 本題考查了對數(shù)的運算性質(zhì)和換底公式,屬于基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

20.已知數(shù)列{an}的通項公式an=19-2n,則Sn取得最大值時n的值為9.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.一個長方體被一個平面所截,切去一部分,得到一個幾何體,其三視圖如圖所示,則截面面積為( 。
A.$\sqrt{141}$B.2$\sqrt{141}$C.16$\sqrt{6}$D.4$\sqrt{141}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

18.已知x與y 之間的一組數(shù)據(jù):
 x  0  1  2  3
 y  1  3  5  7
則y與x的線性回歸方程y=2x+1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

5.已知全集U=R,若A={x|x=$\frac{k}{3}$+$\frac{1}{6}$,k∈Z},B={x|x=$\frac{k}{6}$+$\frac{1}{3}$,k∈Z},有如下判斷:
①∁UB?∁UA;②A∩B=A;③A∪B=A;④∁UA⊆B;⑤A∪B=U
其中正確的序號有②.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

15.若2a=103,0.2b=103,則$\frac{1}{a}$-$\frac{1}$=$\frac{1}{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.已知{an}是一個無窮等比數(shù)列,則下列說法錯誤的是(  )
A.若c是不等于零的常數(shù),那么數(shù)列{c•an}也一定是等比數(shù)列
B.將數(shù)列{an}中的前k項去掉,剩余各項順序不變組成一個新的數(shù)列,這個數(shù)列一定是等比數(shù)列
C.{a2n-1}(n∈N*)是等比數(shù)列
D.設(shè)Sn是數(shù)列{an}的前n項和,那么S6、S12-S6、S18-S12也一定成等比數(shù)列

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.在復(fù)平面內(nèi),O是原點,向量$\overrightarrow{OA}$對應(yīng)的復(fù)數(shù)是2+i,點A關(guān)于虛軸的對稱點為B,則向量$\overrightarrow{OB}$對應(yīng)的復(fù)數(shù)是(  )
A.1+2iB.-2+iC.2-iD.-2-i

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20.在平行四邊形ABCD中,點F為線段CD上靠近點D的一個三等分點.若$\overrightarrow{AC}$=$\overrightarrow{a}$,$\overrightarrow{BD}$=$\overrightarrow$,則$\overrightarrow{AF}$=( 。
A.$\frac{1}{4}$$\overrightarrow{a}$+$\frac{1}{2}$$\overrightarrow$B.$\frac{2}{3}$$\overrightarrow{a}$+$\frac{1}{3}$$\overrightarrow$C.$\frac{1}{2}$$\overrightarrow{a}$+$\frac{1}{4}$$\overrightarrow$D.$\frac{1}{3}$$\overrightarrow{a}$+$\frac{2}{3}$$\overrightarrow$

查看答案和解析>>

同步練習(xí)冊答案