(本小題滿分12分)
已知函數(shù)定義域?yàn)?img src="http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823235945767326.png" style="vertical-align:middle;" />,若對(duì)于任意的,都有,且時(shí),有.
(1)求證: 為奇函數(shù);
(2)求證: 上為單調(diào)遞增函數(shù);
(3)設(shè),若<,對(duì)所有恒成立,求實(shí)數(shù)的取值范圍.
(1)見解析(2)見解析(3)

試題分析:(1)因?yàn)橛?img src="http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823235945814774.png" style="vertical-align:middle;" />,
,得,所以,                      ……1分
可得:
所以,所以為奇函數(shù).                                ……4分
(2)是定義在上的奇函數(shù),由題意
,

是在上為單調(diào)遞增函數(shù);                                     ……8分
(3)因?yàn)?img src="http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823235945736447.png" style="vertical-align:middle;" />在上為單調(diào)遞增函數(shù),
所以上的最大值為,                               ……9分
所以要使<,對(duì)所有恒成立,
只要>1,即>0,                                   ……10分


.                                             ……12分
點(diǎn)評(píng):解決抽象函數(shù)問(wèn)題常用的方法是“賦值法”,而要考查抽象函數(shù)的性質(zhì),還要借助圖象,數(shù)形結(jié)合來(lái)解決.對(duì)于恒成立問(wèn)題,要轉(zhuǎn)為為求最值來(lái)解決,而(3)中將函數(shù)轉(zhuǎn)化為關(guān)于的函數(shù),是這道題解題的亮點(diǎn)所在.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

(本小題滿分12分)探究函數(shù)的最小值,并確定取得最小值時(shí)x的值.列表如下:
x

0.5
1
1.5
1.7
1.9
2
2.1
2.2
2.3
3
4
5
7

y

16
10
8.34
8.1
8.01
8
8.01
8.04
8.08
8.6
10
11.6
15.14

請(qǐng)觀察表中y值隨x值變化的特點(diǎn),完成以下的問(wèn)題.
(1)函數(shù)在區(qū)間(0,2)上遞減;函數(shù)在區(qū)間                     上遞增.當(dāng)             時(shí),                 .
(2)證明:函數(shù)在區(qū)間(0,2)遞減.
(3)思考:函數(shù)時(shí),有最值嗎?是最大值還是最小值?此時(shí)x為何值?(直接回答結(jié)果,不需證明)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

函數(shù)f(x)=的單調(diào)減區(qū)間為___________________

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

函數(shù)上的最大值與最小值的和為            。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

,則的最小值為         。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

函數(shù)在(0,+∞)上(  )
A.既無(wú)最大值又無(wú)最小值B.僅有最小值
C.既有最大值又有最小值D.僅有最大值

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

函數(shù)的圖象如圖所示,其中為常數(shù),則下列結(jié)論正確的是
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

判斷并利用定義證明f(x)=在(-∞,0)上的增減性.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

定義在上的函數(shù),,中,同時(shí)滿足條件①;②對(duì)一切,恒有
A.共有1個(gè) B.共有2個(gè)C.共有3個(gè)D.共有4個(gè)

查看答案和解析>>

同步練習(xí)冊(cè)答案