【題目】我國南北朝時間著名數(shù)學家祖暅提出了祖暅原理:“冪勢既同,則積不容異”.意思是:夾在兩平行平面間的兩個幾何體,被平行于這兩個平行平面的任何平面所載,若截得的兩個截面面積總相等,則這兩個幾何體的體積相等.為計算球的體積,構造一個底面半徑和高都與球半徑相等的圓柱,然后再圓柱內(nèi)挖去一個以圓柱下底面圓心為頂點,圓柱上底面為底面的圓錐,運用祖暅原理可證明此幾何體與半球體積相等(任何一個平面所載的兩個截面面積都相等).將橢圓 繞 軸旋轉一周后得一橄欖狀的幾何體,類比上述方法,運用祖暅原理可求得其體積等于( )
A. B. C. D.
科目:高中數(shù)學 來源: 題型:
【題目】下列結論中:
①定義在R上的函數(shù)f(x)在區(qū)間(-∞,0]上是增函數(shù),在區(qū)間[0,+∞)上也是增函數(shù),則函數(shù)f(x)在R上是增函數(shù);②若f(2)=f(-2),則函數(shù)f(x)不是奇函數(shù);③函數(shù)y=x-0.5是(0,1)上的減函數(shù);④對應法則和值域相同的函數(shù)的定義域也相同;⑤若x0是二次函數(shù)y=f(x)的零點,且m<x0<n,那么f(m)f(n)<0一定成立.
寫出上述所有正確結論的序號:_____.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】若函數(shù)為上的奇函數(shù),且當時,.
(1)求在的解析式;
(2)若,,試討論取何值時,零點的個數(shù)最多?最少?
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,在四棱錐中,已知底面為菱形,,,為對角線與的交點,底面且
(1)求異面直線與所成角的余弦值;
(2)求平面與平面所成銳二面角的余弦值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某工廠的固定成本為3萬元,該工廠每生產(chǎn)100臺某產(chǎn)品的生產(chǎn)成本為1萬元,設生產(chǎn)該產(chǎn)品
(百臺),其總成本為萬元(總成本=固定成本+生產(chǎn)成本),并且銷售收入滿足,假設該產(chǎn)品產(chǎn)銷平衡,根據(jù)上述統(tǒng)計數(shù)據(jù)規(guī)律求:
(Ⅰ)要使工廠有盈利,產(chǎn)品數(shù)量應控制在什么范圍?
(Ⅱ)工廠生產(chǎn)多少臺產(chǎn)品時盈利最大?
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù),其中,且 .
(1)當( 為自然對數(shù)的底)時,討論的單調(diào)性;
(2)當 時,若函數(shù)存在最大值,求的最小值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某中學組織了地理知識競賽,從參加考試的學生中抽出40名學生,將其成績(均為整數(shù))分成六組,,…,,其部分頻率分布直方圖如圖所示.觀察圖形,回答下列問題.
(1)求成績在的頻率,并補全這個頻率分布直方圖:
(2)估計這次考試的及格率(60分及以上為及格)和平均分;(計算時可以用組中值代替各組數(shù)據(jù)的平均值)
(3)從成績在和的學生中選兩人,求他們在同一分數(shù)段的概率.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com