7.復(fù)數(shù)$\frac{1+3i}{i-1}$=(  )
A.1-2iB.1+2iC.-1+2iD.-1-2i

分析 把分子分母同時(shí)乘以分母的共軛復(fù)數(shù),然后利用復(fù)數(shù)代數(shù)形式的乘除運(yùn)算化簡(jiǎn)得答案.

解答 解:$\frac{1+3i}{i-1}$=$\frac{(1+3i)(-1-i)}{(i-1)(-1-i)}=\frac{2-4i}{2}=1-2i$,
故選:A.

點(diǎn)評(píng) 本題考查復(fù)數(shù)代數(shù)形式的乘除運(yùn)算,是基礎(chǔ)的計(jì)算題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

17.若向量$\overrightarrow a$=(4,2,4),$\overrightarrow b$=(6,3,-2),則(2$\overrightarrow a$-3$\overrightarrow b$)•($\overrightarrow a$+2$\overrightarrow b$)=2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

18.下列命題正確的個(gè)數(shù)是( 。
①命題“?x0∈R,x02+1>3x0”的否定是“?x∈R,x2+1≤3x”;
②已知a=log47,b=log23,c=0.2-0.6,則a<b<c;
③“平面向量$\overrightarrow{a}$與$\overrightarrow$的夾角是鈍角”的充分必要條件是“$\overrightarrow{a}$•$\overrightarrow$<0”;
④已知數(shù)列{an}為等比數(shù)列,則a1<a2<a3是數(shù)列{an}為遞增數(shù)列的必要條件.
A.3個(gè)B.4個(gè)C.1個(gè)D.2個(gè)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

15.設(shè)△ABC的內(nèi)角A、B、C的對(duì)邊分別為a、b,c,且A=$\frac{2π}{3}$,a=2bcosC.
(1)求角B的大。
(2)若AB邊上的中線CM的長(zhǎng)為$\sqrt{7}$,求△ABC的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

2.設(shè)f(n)=$\frac{1}{n+1}$+$\frac{1}{n+2}$+…+$\frac{1}{n+{2}^{n}}$,則f(k+1)-f(k)=$\frac{1}{k+1{+2}^{k}}$+$\frac{1}{k+2{+2}^{k}}$+…+$\frac{1}{k+1{+2}^{k+1}}$-$\frac{1}{k+1}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

12.在方程$\left\{\begin{array}{l}{x=a+tcosθ}\\{y=b+tsinθ}\end{array}\right.$(a,b為常數(shù)).
(1)當(dāng)t為參數(shù),θ為常數(shù)時(shí),方程表示什么曲線?
(2)當(dāng)θ為參數(shù),t為非零常數(shù)時(shí),方程表示什么曲線?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

19.若復(fù)數(shù)z滿足z=1+$\frac{1}{i}$(i為虛數(shù)單位),則復(fù)數(shù)z的共軛復(fù)數(shù)|$\overline{z}$|的模為( 。
A.0B.1C.$\sqrt{2}$D.2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

16.已知點(diǎn)F是拋物線x2=4y的焦點(diǎn),定點(diǎn)M(2,3),點(diǎn)P是該拋物線上的動(dòng)點(diǎn)(點(diǎn)P不在直線MF上),則△PMF周長(zhǎng)的最小值為4+2$\sqrt{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

17.已知不等式mx2-2x-m+1<0.
(1)若對(duì)任意實(shí)數(shù)x上述不等式恒成立,求m的取值范圍;
(2)若對(duì)一切m∈[-2,2]上述不等式恒成立,求x的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案