【題目】2016年9月,第22屆魯臺(tái)經(jīng)貿(mào)洽談會(huì)在濰坊魯臺(tái)會(huì)展中心舉行,在會(huì)展期間某展銷(xiāo)商銷(xiāo)售一種商品,根據(jù)市場(chǎng)調(diào)查,每件商品售價(jià)x(元)與銷(xiāo)量t(萬(wàn)元)之間的函數(shù)關(guān)系如圖所示,又知供貨價(jià)格與銷(xiāo)量呈反比,比例系數(shù)為20.(注:每件產(chǎn)品利潤(rùn)=售價(jià)﹣供貨價(jià)格)
(1)求售價(jià)15元時(shí)的銷(xiāo)量及此時(shí)的供貨價(jià)格;
(2)當(dāng)銷(xiāo)售價(jià)格為多少時(shí)總利潤(rùn)最大,并求出最大利潤(rùn).

【答案】
(1)解:每件商品售價(jià)x(元)與銷(xiāo)量t(萬(wàn)件)之間的函數(shù)關(guān)系為t=20﹣x(0≤x≤20),

設(shè)價(jià)格為y,則y= ,x=15時(shí),t=5萬(wàn)件,y=4萬(wàn)元


(2)解:總利潤(rùn)L=(x﹣ )t=xt﹣20=x(20﹣x)﹣20≤ ﹣20=80,

當(dāng)且僅當(dāng)x=10元時(shí)總利潤(rùn)最大,最大利潤(rùn)80萬(wàn)元


【解析】(1)每件商品售價(jià)x(元)與銷(xiāo)量t(萬(wàn)件)之間的函數(shù)關(guān)系為t=20﹣x(0≤x≤20),設(shè)價(jià)格為y,則y= ,即可求售價(jià)15元時(shí)的銷(xiāo)量及此時(shí)的供貨價(jià)格;(2)總利潤(rùn)L=(x﹣ )t=xt﹣20=x(20﹣x)﹣20≤ ﹣20=80,可得結(jié)論.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè)l,m是兩條不同直線,α是一個(gè)平面,則下列四個(gè)命題正確的是(
A.若l⊥m,mα,則l⊥α
B.若l∥α,m∥α,則l∥m
C.若l∥α,mα,則l∥m
D.若l⊥α,l∥m,則m⊥α

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在多面體ABCDEF中,四邊形ABCD是正方形,EF∥AB,EF⊥FB,AB=2EF,∠BFC=90°,BF=FC,H為BC的中點(diǎn).

(1)求證:FH∥平面EDB;
(2)求證:AC⊥平面EDB;
(3)解:求二面角B﹣DE﹣C的大。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè)f(x)=﹣ x3+ x2+2ax.
(1)若f(x)在( ,+∞)上是單調(diào)減函數(shù),求實(shí)數(shù)a的取值范圍.
(2)當(dāng)0<a<2時(shí),f(x)在[1,4]上的最小值為﹣ ,求f(x)在該區(qū)間的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在三棱柱中,平面平面,四邊形為菱形,點(diǎn)是棱上不同于, 的點(diǎn),平面與棱交于點(diǎn), ,

(Ⅰ)求證: ∥平面;

求證: 平面

若二面角,的長(zhǎng)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知a∈R,函數(shù)f(x)═log2 +a).
(1)若f(1)<2,求實(shí)數(shù)a的取值范圍;
(2)設(shè)函數(shù)g(x)=f(x)﹣log2[(a﹣4)x+2a﹣5],討論函數(shù)g(x)的零點(diǎn)個(gè)數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知偶函數(shù)f(x)的定義域?yàn)镽,且在(﹣∞,0)上是增函數(shù),則f(﹣ )與f(a2﹣a+1)的大小關(guān)系為(
A.f(﹣ )<f(a2﹣a+1)
B.f(﹣ )>f(a2﹣a+1)??
C.f(﹣ )≤f(a2﹣a+1)
D.f(﹣ )≥f(a2﹣a+1)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù),其中

)當(dāng)時(shí),求曲線在點(diǎn)處的切線方程

(Ⅱ)求在區(qū)間上的最小值.(其中是自然對(duì)數(shù)的底數(shù)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖所示,在直角梯形ABCD中,AB∥CD,∠BCD=90°,BC=CD=2,AF=BF,EC∥FD,F(xiàn)D⊥底面ABCD,M是AB的中點(diǎn).
(1)求證:平面CFM⊥平面BDF;
(2)點(diǎn)N在CE上,EC=2,F(xiàn)D=3,當(dāng)CN為何值時(shí),MN∥平面BEF.

查看答案和解析>>

同步練習(xí)冊(cè)答案