分析 f(x+1)是周期為2的奇函數,可得f(x)為周期為2的函數,即f(x+2)=f(x).由f(x+1)是奇函數,有f(-x+1)=-f(x+1),即f(x)=-f(2-x),即可得出.
解答 解:∵f(x+1)是周期為2的奇函數,
∴f(x)為周期為2的函數,
即f(x+2)=f(x).
由f(x+1)是奇函數,有f(-x+1)=-f(x+1),
即f(x)=-f(2-x),
故f(-$\frac{3}{2}$)=f($\frac{1}{2}$)=-f($\frac{3}{2}$)=-f(-$\frac{1}{2}$),
而-1≤x≤0時,f(x)=-2x(x+1),
∴f(-$\frac{1}{2}$)=-2×$(-\frac{1}{2})$×$(-\frac{1}{2}+1)$=$\frac{1}{2}$,
∴f(-$\frac{3}{2}$)=$-\frac{1}{2}$.
故答案為:$-\frac{1}{2}$.
點評 本題考查了函數的奇偶性、周期性、函數求值,考查了推理能力與計算能力,屬于中檔題.
科目:高中數學 來源: 題型:解答題
查看答案和解析>>
科目:高中數學 來源: 題型:選擇題
A. | $\sqrt{2}$ | B. | $\sqrt{3}$ | C. | $\sqrt{6}$ | D. | $\sqrt{11}$ |
查看答案和解析>>
科目:高中數學 來源: 題型:選擇題
A. | $0<m≤\frac{1}{3}$ | B. | $0<m<\frac{1}{2}$ | C. | $\frac{1}{2}<m≤1$ | D. | $\frac{1}{3}<m<1$ |
查看答案和解析>>
科目:高中數學 來源: 題型:選擇題
A. | (-∞,-$\frac{1}{4}$) | B. | (-$\frac{1}{4}$,-$\frac{1}{8}$) | C. | (-$\frac{1}{8}$,-$\frac{1}{16}$) | D. | (-$\frac{1}{16}$,0) |
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com