8.曲線y=x4與直線y=4x+b相切,則實數(shù)b的值是-3.

分析 設直線與曲線的切點為P(m,n),點P分別滿足直線方程與曲線方程,同時y'(m)=4即可求出b值

解答 解:設直線與曲線的切點為P(m,n)
則有:$\left\{\begin{array}{l}{y'(m)=4}\\{4m+b=n}\end{array}\right.$⇒$\left\{\begin{array}{l}{4{m}^{3}=4}\\{4m+b=n}\end{array}\right.$,化簡求:m=1,b=n-4;
又因為點P滿足曲線y=x4,所以:n=1;
則:b=n-4=-3;
故答案為:-3.

點評 本題主要考察了點滿足曲線,以及利用導數(shù)研究曲線上某點切線方程,屬中等題.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:填空題

18.已知定義在R上的偶函數(shù)f(x)滿足f(x+4)=-f(x),且在區(qū)間[0,4]上市減函數(shù),則f(10)、f(13)、f(15)這三個函數(shù)值從小到大排列為f(13)<f(10)<f(15).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

19.已知f(3x)=2xlog2x,那么f(3)的值是0.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

16.已知tanα=2,則$\frac{{sin(α+\frac{π}{2})+cos(α-\frac{π}{2})}}{{3sin(\frac{π}{2}-α)-cos(\frac{π}{2}+α)}}$=$\frac{3}{5}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

3.已知函數(shù)$f(x)={x^2}+4[sin(θ+\frac{π}{3})]•x-2$,θ∈[0,2π)
(1)若函數(shù)f(x)是偶函數(shù):①求tanθ的值;②求$\sqrt{3}sinθ•cosθ+{cos^2}θ$的值.
(2)若f(x)在$[-\sqrt{3},1]$上是單調函數(shù),求θ的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

13.已知函數(shù)f(x)=(x2+x+m)ex(其中m∈R,e為自然對數(shù)的底數(shù)).若在x=-3處函數(shù)f (x)有極大值,則函數(shù)f (x)的極小值是-1.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

1.某軟件公司新開發(fā)一款游戲軟件,該軟件按游戲的難易程度共設置若干關的闖關游戲,為了激發(fā)闖關熱情,每闖過一關都獎勵若干慧幣(一種網(wǎng)絡虛擬幣).設第n關獎勵an個慧幣,且滿足$\frac{1}{2}$an≤an+1≤4an,a1=1,該軟件提供了兩種獎勵方案:第一種,從第二關開始,每闖過一關獎勵的慧幣數(shù)是前一關的q倍;第二種,從第二關開始每一關比前一關多獎勵d慧幣(d∈R);游戲規(guī)定:闖關者須于闖關前任選一種獎勵方案.
(Ⅰ)若選擇第一種方案,設第一關到第n關獎勵的總慧幣數(shù)為Sn,即Sn=a1+a2+…+an,且$\frac{1}{2}$Sn≤Sn+1
4Sn,求q的取值范圍;
(Ⅱ)如果選擇第二種方案,且設置第一關到第k關獎勵的總幣數(shù)為100(即a1+a2+a3+…+ak=100,k∈N*)時獲特別獎,為了增加獲特別獎的難度,如何設置d的取值,使得k最大,并求k的最大值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

18.已知實數(shù)x、y滿足$\left\{\begin{array}{l}y≥0\\ x+y≤0\\ 2x+y+2≤0\end{array}$,則z=$\frac{y-1}{x-1}$的取值范圍是(  )
A.$(-2,\left.{-\frac{1}{3}}]$B.$(-2,\left.{\frac{1}{2}}]$C.$(-\frac{1}{3},\left.{\frac{1}{2}}]$D.$(-1,\left.{\frac{1}{2}}]$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

19.已知向量$\overrightarrow a=(4,3)$,$\overrightarrow b=(1,2)$.
(1)設$\overrightarrow a$與$\overrightarrow b$的夾角為θ,求cosθ的值;
(2)若$\overrightarrow a-λ\overrightarrow b$與$2\overrightarrow a+\overrightarrow b$垂直,求實數(shù)λ的值..

查看答案和解析>>

同步練習冊答案