cos2α
sin(α-
π
4
)
=-
2
2
,則cosα+sinα的值為( 。
A、-
7
2
B、-
1
2
C、
1
2
D、
7
2
分析:題目的條件和結(jié)論都是三角函數(shù)式,第一感覺(jué)是先整理?xiàng)l件,用二倍角公式和兩角差的正弦公式,約分后恰好是要求的結(jié)論.
解答:解:∵
cos2α
sin(α-
π
4
)
=
cos2α-sin2α
2
2
(sinα-cosα)
=-
2
(sinα+cosα)=-
2
2
,
cosα+sinα=
1
2
,
故選C
點(diǎn)評(píng):本題解法巧妙,能解的原因是要密切注意各公式間的內(nèi)在聯(lián)系,熟練地掌握這些公式的正用、逆用以及某些公式變形后的應(yīng)用.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

cos2α
sin(α-
π
4
)
=-
2
2
,則cosα+sinα=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

cos2α
sin(α-
π
4
)
=-
2
2
,則sin2α的值為(  )

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

cos2α
sin(α-
π
4
)
=-
2
2
,則sinα+cosα的值為
1
2
1
2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2012•昌圖縣模擬)若
cos2α
sin(α+
4
)
=-
2
2
,則sinα+cosα的值為( 。

查看答案和解析>>

同步練習(xí)冊(cè)答案