【題目】已知函數(shù),.

()若函數(shù)至少有一個零點,的取值范圍;

()若函數(shù)的最大值為,求的值

【答案】() ;() .

【解析】

試題()根據(jù)方程的根與函數(shù)的零點的關(guān)系,將問題轉(zhuǎn)化為函數(shù)對應(yīng)的方程有至少一個根,那么由判別式與根的個數(shù)的關(guān)系可知,只要判別式大于或等于0即可,列不等式求解;()先求出二次函數(shù)的對稱軸,看看所給的閉區(qū)間與對稱軸的關(guān)系,分兩種情況進行討論:當(dāng)時,左半?yún)^(qū)間在對稱軸的左邊,最大值是;當(dāng)時,右半?yún)^(qū)間在對稱軸的右邊,最大值是.然后結(jié)合最大值是3來求解.

試題解析:()依題意,函數(shù)至少有一個零點

即方程至少有一個實數(shù)根. 2分

所以,

解得. 5分

()函數(shù)圖象的對稱軸方程.

當(dāng),即時,.

解得.又,

所以. 9分

當(dāng),即時,

解得.又

所以. 13分

綜上,. 14

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)數(shù)列的前n項和為,已知,,.

(1)證明:為等比數(shù)列,求出的通項公式;

(2)若,求的前n項和,并判斷是否存在正整數(shù)n使得成立?若存在求出所有n值;若不存在說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某城市為了解游客人數(shù)的變化規(guī)律,提高旅游服務(wù)質(zhì)量,收集并整理了20171月至201912月期間月接待游客量(單位:萬人)的數(shù)據(jù),繪制了下面的折線圖.根據(jù)該折線圖,下列結(jié)論正確的是( )

A.年接待游客量逐年增加

B.各年的月接待游客量高峰期大致在8

C.20171月至12月月接待游客量的中位數(shù)為30

D.各年1月至6月的月接待游客量相對于7月至12月,波動性更小,變化比較平穩(wěn)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在直角坐標(biāo)系中,曲線的參數(shù)方程為為參數(shù)),以原點為極點,以軸正半軸為極軸建立極坐標(biāo)系,曲線的極坐標(biāo)方程為.

(1)當(dāng)時,判斷曲線與曲線的位置關(guān)系;

(2)當(dāng)曲線上有且只有一點到曲線的距離等于時,求曲線上到曲線距離為的點的坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平行四邊形中,,.現(xiàn)沿對角線折起,使點到達點.點、分別在、上,且、、、四點共面.

(1)求證:;

(2)若平面平面,平面與平面夾角為,求與平面所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在直角梯形中, , , 分別為的中點,以為圓心, 為半徑的圓交,點在弧上運動(如圖).若,其中, ,則的取值范圍是( )

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在四棱錐中,,,均為邊長為的等邊三角形.

(1)求證:平面平面

(2)求二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】湖南省會城市長沙又稱星城,是楚文明和湖湘文化的發(fā)源地,是國家首批歷史文化名城.城內(nèi)既有岳麓山、橘子洲等人文景觀,又有岳麓書院、馬王堆漢墓等名勝古跡,每年都有大量游客來長沙參觀旅游.為合理配置旅游資源,管理部門對首次來岳麓山景區(qū)游覽的游客進行了問卷調(diào)查,據(jù)統(tǒng)計,其中的人計劃只游覽岳麓山,另外的人計劃既游覽岳麓山又參觀馬王堆.每位游客若只游覽岳麓山,則記1分;若既游覽岳麓山又參觀馬王堆,則記2.假設(shè)每位首次來岳麓山景區(qū)游覽的游客計劃是否參觀馬王堆相互獨立,視頻率為概率.

1)從游客中隨機抽取3人,記這3人的合計得分為,求的分布列和數(shù)學(xué)期望;

2)從游客中隨機抽取人(),記這人的合計得分恰為分的概率為,求;

3)從游客中隨機抽取若干人,記這些人的合計得分恰為分的概率為,隨著抽取人數(shù)的無限增加,是否趨近于某個常數(shù)?若是,求出這個常數(shù);若不是,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,正方形的邊長為為正三角形,平面平面,是線段的中點,是線段上的動點.

1)探究四點共面時,點位置,并證明;

2)當(dāng)四點共面時,求到平面的距離.

查看答案和解析>>

同步練習(xí)冊答案