15.拋物線x2=4y上一點(diǎn)P到焦點(diǎn)的距離為3,則點(diǎn)P到y(tǒng)軸的距離為( 。
A.2$\sqrt{2}$B.1C.2D.3

分析 先根據(jù)拋物線方程求得焦點(diǎn)坐標(biāo)及準(zhǔn)線方程,進(jìn)而根據(jù)拋物線的定義可知點(diǎn)p到焦點(diǎn)的距離與到準(zhǔn)線的距離相等,進(jìn)而推斷出yp+1=2,求得yp,代入拋物線方程即可求得點(diǎn)p的橫坐標(biāo)即可.

解答 解:根據(jù)拋物線方程可求得焦點(diǎn)坐標(biāo)為(0,1),準(zhǔn)線方程為y=-1,
根據(jù)拋物線定義,
∴yp+1=3,
解得yp=2,代入拋物線方程求得x=±2$\sqrt{2}$,
∴點(diǎn)P到y(tǒng)軸的距離為:2$\sqrt{2}$.
故選:A.

點(diǎn)評 本題主要考查拋物線的定義:拋物線上的點(diǎn)到焦點(diǎn)距離與到準(zhǔn)線距離相等,常可用來解決涉及拋物線焦點(diǎn)的直線或焦點(diǎn)弦的問題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

19.已知a,b,c分別是△ABC的角A,B,C所對的邊,且c=2,C=$\frac{π}{3}$,若sinC+sin(B-A)=2sin2A,則A=$\frac{π}{2}$或$\frac{π}{6}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.如圖,四邊形ABCD為菱形,ACFE為平行四邊形,且平面ACFE⊥平面ABCD,設(shè)BD與AC相交于點(diǎn)G,H為FG的中點(diǎn).
(1)證明:BD⊥CH;
(2)若$AB=BD=2,AE=\sqrt{3},CH=\frac{{\sqrt{3}}}{2}$;
①求三棱錐F-BDC的體積.
②求二面角B-DF-C的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

3.拋物線x2=-8y的焦點(diǎn)坐標(biāo)為(0,-2).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

10.設(shè)A、B是焦點(diǎn)為F(1,0)的拋物線y2=2px(p>0)上異于坐標(biāo)原點(diǎn)的兩點(diǎn),若$\overrightarrow{OA}$?$\overrightarrow{OB}$=0,則坐標(biāo)原點(diǎn)O(0,0)到直線AB距離的最大值為4.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

20.如圖,直線l:y=x+b與拋物線C:x2=4y相切于點(diǎn)A.
(1)求實(shí)數(shù)b的值;
(2)求以點(diǎn)A為圓心,且與拋物線C的準(zhǔn)線相切的圓的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

7.拋物線y2=2px(p>0)上的動點(diǎn)Q到焦點(diǎn)的距離的最小值為$\frac{3}{2}$,則p=( 。
A.$\frac{1}{2}$B.2C.$\frac{3}{2}$D.3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.設(shè)拋物線y2=4x的焦點(diǎn)為F,過點(diǎn)M(2,0)的直線與拋物線相交于A,B兩點(diǎn),與拋物線的準(zhǔn)線相交于點(diǎn)C,$|{BF}|=\frac{3}{2}$,則$\frac{{|{BC}|}}{{|{AC}|}}$=( 。
A.1:4B.1:5C.1:7D.1:6

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

5.已知橢圓C1:$\frac{x^2}{16}+\frac{y^2}{4}$=1,直線l1:y=kx+m(m>0)與圓C2:(x-1)2+y2=1相切且與橢圓C1交于A,B兩點(diǎn).
(Ⅰ)若線段AB中點(diǎn)的橫坐標(biāo)為$\frac{4}{3}$,求m的值;
(Ⅱ)過原點(diǎn)O作l1的平行線l2交橢圓于C,D兩點(diǎn),設(shè)|AB|=λ|CD|,求λ的最小值.

查看答案和解析>>

同步練習(xí)冊答案