已知四棱錐P-ABCD及其三視圖如下圖所示,E是側(cè)棱PC上的動點,
(Ⅰ)求四棱錐P-ABCD的體積;
(Ⅱ)不論點E在何位置,是否都有BD⊥AE?證明你的結(jié)論。
解:(Ⅰ)由三視圖可知,四棱錐P-ABCD的底面是邊長為1的正方形,
側(cè)棱PC⊥底面ABCD,且PC=2,
,
即四棱錐P-ABCD的體積為
(Ⅱ)不論點E在何位置,都有BD⊥AE;
證明:連接AC,
∵四邊形ABCD是正方形,
∴BD⊥AC,
∵PC⊥底面ABCD,
∴BD⊥PC,
又∵AC∩PC=C,
∴BD⊥平面PAC,
∵不論點E在何位置,都有AE平面PAC,
∴不論點E在何位置,都有BD⊥AE。
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,已知四棱錐P--ABC的底面ABCD為正方形,PA⊥平面ABCD,PA=AB=2,e為PC的中點,F(xiàn)為AD的中點.
(Ⅰ)證明EF∥平面PAB;
(Ⅱ)證明EF⊥平面PBC;
(III)點M是四邊形ABCD內(nèi)的一動點,PM與平面ABCD所成的角始終為45°,求動直線PM所形成的曲面與平面ABCD、平面PAB、平面PAD所圍成幾何體的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,已知四棱錐P-ABCD的底面是直角梯形,∠ABC=∠BCD=90°,AB=BC=2CD=2,PB=PC,側(cè)面PBC⊥底面ABCD,O是BC的中點.
(1)求證:PO⊥平面ABCD;
(2)求證:PA⊥BD
(3)若二面角D-PA-O的余弦值為
10
5
,求PB的長.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知四棱錐P-ABCD的底面是直角梯形,∠ABC=∠BCD=90°,E為BC中點,AE與BD交于O點,AB=BC=2CD=2,BD⊥PE.
(1)求證:平面PAE⊥平面ABCD; 
(2)若直線PA與平面ABCD所成角的正切值為
5
2
,PO=2,求四棱錐P-ABCD的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,已知四棱錐P-ABCD中,PA⊥平面ABCD,底面ABCD是直角梯形,∠DAB=∠ABC=90°,E是線段PC上一點,PC⊥平面BDE.
(Ⅰ)求證:BD⊥平面PAB.
(Ⅱ)若PA=4,AB=2,BC=1,求直線AC與平面PCD所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2010-2011學(xué)年山東省濟寧一中高三(上)期末數(shù)學(xué)試卷(理科)(解析版) 題型:解答題

如圖,已知四棱錐P--ABC的底面ABCD為正方形,PA⊥平面ABCD,PA=AB=2,e為PC的中點,F(xiàn)為AD的中點.
(Ⅰ)證明EF∥平面PAB;
(Ⅱ)證明EF⊥平面PBC;
(III)點M是四邊形ABCD內(nèi)的一動點,PM與平面ABCD所成的角始終為45°,求動直線PM所形成的曲面與平面ABCD、平面PAB、平面PAD所圍成幾何體的體積.

查看答案和解析>>

同步練習(xí)冊答案