( (本小題滿分12分) 如圖,在直三棱柱ABC—A1B1C1中,
.
(Ⅰ)若D為AA1中點(diǎn),求證:平面B1CD平面B1C1D;
(Ⅱ)若二面角B1—DC—C1的大小為60°,求AD的長(zhǎng).
Ⅰ)∵,∴,
又由直三棱柱性質(zhì)知,∴平面ACC1A1.∴……① ……………3分
由D為中點(diǎn)可知,,
∴即……②………………………5分
由①②可知平面B1C1D,又平面B1CD,故平面平面B1C1D. … 6分
(Ⅱ)由(1)可知平面ACC1A1,如圖,在面ACC1A1內(nèi)過(guò)C1作,交CD或延長(zhǎng)線或于E,連EB1,由三垂線定理可知為二面角B1—DC—C1的平面角,………………8分
∴由B1C1=2知,, …………………10分
設(shè)AD=x,則∵的面積為1,∴,
解得,即 ……………………………………12分
【解析】略
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
3 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
ON |
ON |
5 |
OM |
OT |
M1M |
N1N |
OP |
OA |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
(本小題滿分12分)已知關(guān)于的一元二次函數(shù) (Ⅰ)設(shè)集合P={1,2, 3}和Q={-1,1,2,3,4},分別從集合P和Q中隨機(jī)取一個(gè)數(shù)作為和,求函數(shù)在區(qū)間[上是增函數(shù)的概率;(Ⅱ)設(shè)點(diǎn)(,)是區(qū)域內(nèi)的隨機(jī)點(diǎn),求函數(shù)上是增函數(shù)的概率。
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
(本小題滿分12分) 一幾何體的三視圖如圖所示,,A1A=,AB=,AC=2,A1C1=1,在線段上且=.
(I)證明:平面⊥平面;
(II)求二面角的余弦值.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com