(1)設橢圓
x2
m2
+
y2
n2
=1(m>0,n>0)的右焦點與拋物線y2=8x的焦點相同,離心率為
1
2
,求橢圓的標準方程.
(2)設雙曲線與橢圓
x2
27
+
y2
36
=1有相同的焦點,且與橢圓相交,一個交點A的縱坐標為4,求此雙曲線的標準方程.
(1)∵拋物線y2=8x的焦點坐標為F(2,0)
∴橢圓
x2
m2
+
y2
n2
=1(m>0,n>0)的右焦點為F(2,0),可得m2-n2=4…①
∵橢圓的離心率e=
c
a
=
1
2
,∴
m2-n2
m2
=
1
4
…②
聯(lián)解①②,得m2=16,n2=12
∴該橢圓的標準方程為
x2
16
+
y2
12
=1;
(2)∵橢圓
x2
27
+
y2
36
=1經(jīng)過點A的縱坐標為4
∴設A(t,4),可得
t2
27
+
16
36
=1,解之得t=±
15
,A(±
15
,4)
∵橢圓
x2
27
+
y2
36
=1的焦點為(0,±3),雙曲線與橢圓
x2
27
+
y2
36
=1有相同的焦點,
∴雙曲線的焦點為(0,±3),因此設雙曲線方程為
y2
k
-
x2
9-k
=1(0<k<9)
將點A(±
15
,4)代入,得
16
k
-
15
9-k
=1,解之得k=4(舍負)
∴雙曲線方程為
y2
4
-
x2
5
=1
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

設橢圓
x2
m2
+
y2
m2-1
=1(m>1)
上一點P到其左焦點的距離為3,到右焦點的距離為1,則P點到右準線的距離為( 。
A、6
B、2
C、
1
2
D、
2
7
7

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

設橢圓
x2
m2
+
y2
n2
=1
(m>0,n>0)的一個焦點與拋物線x2=4y的焦點相同,離心率為
1
3
則此橢圓的方程為( 。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(1)設橢圓
x2
m2
+
y2
n2
=1(m>0,n>0)的右焦點與拋物線y2=8x的焦點相同,離心率為
1
2
,求橢圓的標準方程.
(2)設雙曲線與橢圓
x2
27
+
y2
36
=1有相同的焦點,且與橢圓相交,一個交點A的縱坐標為4,求此雙曲線的標準方程.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

設橢圓
x2
m2
+
y2
n2
=1(m>0,n>0)的右焦點與拋物線y2=8x的焦點相同,離心率為
1
2
,則此橢圓的短軸長為( 。

查看答案和解析>>

同步練習冊答案