【題目】已知點(diǎn)A(x1,y1),B(x2,y2),M(1,0),=(3λ,4λ)(λ≠0),=-4,若拋物線y2=ax經(jīng)過AB兩點(diǎn),a的值為(  )

A. 2 B. -2

C. -4 D. 4

【答案】D

【解析】

易得直線AB的方程為y=(x-1),與y2=ax聯(lián)立,利用一元二次方程根與系數(shù)的關(guān)系,結(jié)合= -4,y1=-4y2,即可求出a的值

= -4 ,∴M,A,B三點(diǎn)共線 ,

∵A(x1,y1),B(x2,y2),M(1,0),=(3λ,4λ)(λ≠0),

∴直線AB的方程為y=(x-1),

y2=ax聯(lián)立可得y2-ay-a=0,∴y1+y2=a①,y1y2=-a②,

又∵= -4,M(1,0)∴y1=-4y2③,

由①②③可得a=4,

故選:D

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)=(a∈R),給出兩個(gè)命題:p:函數(shù)f(x)的值域不可能是(0,+∞);q:函數(shù)f(x)的單調(diào)遞增區(qū)間可以是(-∞,-2].那么下列命題為真命題的是(  )

A. p∧q B. p∨(q)

C. (p)∧q D. (p)∧(q)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)=xlnx,g(x)=﹣x2+ax﹣3.
(1)求f(x)在[t,t+2](t>0)上的最小值;
(2)若存在x 使不等式2f(x)≥g(x)成立,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】空氣質(zhì)量指數(shù)PM2.5(單位:μg/m3)表示每立方米空氣中可入肺顆粒物的含量,這個(gè)值越高,就代表空氣污染越嚴(yán)重:

PM2.5
日均濃度

0~35

35~75

75~115

115~150

150~250

>250

空氣質(zhì)量級別

一級

二級

三級

四級

五級

六級

空氣質(zhì)量類型

優(yōu)

輕度污染

中度污染

重度污染

嚴(yán)重污染

甲、乙兩城市2013年2月份中的15天對空氣質(zhì)量指數(shù)PM2.5進(jìn)行監(jiān)測,獲得PM2.5日均濃度指數(shù)數(shù)據(jù)如莖葉圖所示:

(1)根據(jù)你所學(xué)的統(tǒng)計(jì)知識估計(jì)甲、乙兩城市15天內(nèi)哪個(gè)城市空氣質(zhì)量總體較好?(注:不需說明理由)
(2)在15天內(nèi)任取1天,估計(jì)甲、乙兩城市空氣質(zhì)量類別均為優(yōu)或良的概率;
(3)在乙城市15個(gè)監(jiān)測數(shù)據(jù)中任取2個(gè),設(shè)X為空氣質(zhì)量類別為優(yōu)或良的天數(shù),求X的分布列及數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知p3+q3=2,求證:p+q≤2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓 的長軸長是短軸長的兩倍,且過點(diǎn)C(2,1),點(diǎn)C關(guān)于原點(diǎn)O的對稱點(diǎn)為點(diǎn)D.
(1)求橢圓E的方程;
(2)點(diǎn)P在橢圓E上,直線CP和DP的斜率都存在且不為0,試問直線CP和DP的斜率之積是否為定值?若是,求此定值;若不是,請說明理由:
(3)平行于CD的直線l交橢圓E于M,N兩點(diǎn),求△CMN面積的最大值,并求此時(shí)直線l的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓M的對稱軸為坐標(biāo)軸,離心率為,且一個(gè)焦點(diǎn)坐標(biāo)為(,0).

(1)求橢圓M的方程;

(2)設(shè)直線l與橢圓M相交于A,B兩點(diǎn),以線段OA,OB為鄰邊作平行四邊形OAPB,其中點(diǎn)P在橢圓M,O為坐標(biāo)原點(diǎn),求點(diǎn)O到直線l的距離的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓,為焦點(diǎn),且離心率

(1)求橢圓的方程;

(2)過點(diǎn)斜率為的直線與橢圓有兩個(gè)不同交點(diǎn),求的范圍;

(3)設(shè)橢圓軸正半軸、軸正半軸的交點(diǎn)分別為,是否存在直線,滿足(2)中的條件且使得向量垂直?如果存在,寫出的方程;如果不存在,請說明理由。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,A、B、C、D為平面四邊形ABCD的四個(gè)內(nèi)角.

(1)證明:tan
(2)若A+C=180°,AB=6,BC=3,CD=4,AD=5,求tan +tan +tan +tan 的值.

查看答案和解析>>

同步練習(xí)冊答案