已知橢圓的對(duì)稱軸是坐標(biāo)軸,中心是坐標(biāo)原點(diǎn),離心率為數(shù)學(xué)公式,長軸長為12,那么橢圓方程為


  1. A.
    數(shù)學(xué)公式數(shù)學(xué)公式
  2. B.
    數(shù)學(xué)公式
  3. C.
    數(shù)學(xué)公式數(shù)學(xué)公式
  4. D.
    數(shù)學(xué)公式數(shù)學(xué)公式
C
分析:先求出橢圓中的長半軸長和短半軸長,再判斷焦點(diǎn)位置,因?yàn)榻裹c(diǎn)位置不確定,所以求出的橢圓方程有兩種形式.
解答:∵橢圓的長軸長為12,即2a=12,
∴a=6
∵離心率為,即e==,∴c=2
∵b2=a2-c2,∴b2=36-4=32
當(dāng)橢圓焦點(diǎn)在x軸上時(shí),橢圓方程為
當(dāng)橢圓焦點(diǎn)在y軸上時(shí),橢圓方程為
故選C
點(diǎn)評(píng):本題主要考查考察查了橢圓的標(biāo)準(zhǔn)方程的求法,關(guān)鍵是求出a,b的值,易錯(cuò)點(diǎn)是沒有判斷焦點(diǎn)位置.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知橢圓的對(duì)稱軸是坐標(biāo)軸,中心是坐標(biāo)原點(diǎn),離心率為
1
3
,長軸長為12,那么橢圓方程為( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知橢圓的對(duì)稱軸是坐標(biāo)軸,O為坐標(biāo)原點(diǎn),F(xiàn)是一個(gè)焦點(diǎn),A是一個(gè)頂點(diǎn),若橢圓的長軸長是26,cos∠OFA=,則橢圓的方程是…( 。

A.+ =1

B. +=1

C. +=1或+=1

D. +=1或+=1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知橢圓的對(duì)稱軸是坐標(biāo)軸,O為坐標(biāo)原點(diǎn),F是一個(gè)焦點(diǎn),A是一個(gè)頂點(diǎn),若橢圓的長軸長是26,cos∠OFA=,則橢圓的方程是(  )

A.                                                   B.

C.                          D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知橢圓的對(duì)稱軸是坐標(biāo)軸,O為坐標(biāo)原點(diǎn),F是一個(gè)焦點(diǎn),A是一個(gè)頂點(diǎn),若橢圓的長軸長是6且cos∠OFA=,則橢圓的方程為__________.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2012年蘇教版高中數(shù)學(xué)選修2-1 2.2橢圓練習(xí)卷(解析版) 題型:解答題

已知橢圓的對(duì)稱軸是坐標(biāo)軸,O為坐標(biāo)原點(diǎn),F(xiàn)是一個(gè)焦點(diǎn),A是一個(gè)頂點(diǎn),若橢圓的長軸長是6,且,求橢圓的方程.

 

查看答案和解析>>

同步練習(xí)冊(cè)答案