9.如圖,四棱錐P-ABCD的底面ABCD是菱形,∠BCD=60°,PA⊥面ABCD,E 是AB的中點(diǎn),F(xiàn)是PC的中點(diǎn).
(Ⅰ)求證:DE⊥面PAB
(Ⅱ)求證:BF∥面PDE.

分析 (I)證明DE⊥AB,DE⊥AP,利用線面垂直的判定定理,可得DE⊥面PAB.
(Ⅱ)證明FG與BE平行且相等,可得BF∥GE,利用線面平行的判定可得BF∥面.

解答 (本小題滿(mǎn)分10分)
解:(Ⅰ)∵底面ABCD是菱形,∠BCD=60°,
∴△ABD為正三角形
E是AB的中點(diǎn),DE⊥AB,-----------------------------------(2分)
PA⊥面ABCD,DE?平面ABCD,
∴DE⊥AP,-----------------------------------(4分)
∵AP∩AB=A,
∴DE⊥平面PAB,-----------------------------------(5分)
(Ⅱ)取PD的中點(diǎn)G,連結(jié)FG,GE,-----------------------------------(6分)
∵F,G是中點(diǎn),
∴FG∥CD且FG=$\frac{1}{2}$CD,
∴FG與BE平行且相等,
∴BF∥GE,-----------------------------------(8分)
∵GE?平面PDE,BF?平面PDE,-----------------------------------(9分)
∴BF∥面PDE.-----------------------------------(10分)

點(diǎn)評(píng) 本題考查線面垂直,面面垂直,考查線面平行,考查了空間想象能力和推理論證能力,正確運(yùn)用判定定理是關(guān)鍵,屬于中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

19.若tan($\frac{π}{4}$+α)=-2,則$\frac{sin2α}{{{{cos}^2}α}}$=( 。
A.2B.3C.4D.6

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

20.x-2y=2變成直線2x′-y′=4的伸縮變換為$\begin{array}{l}\left\{\begin{array}{l}{x^'}=x\\{y^'}=4y\end{array}\right.\end{array}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

17.已知i是虛數(shù)單位,則復(fù)數(shù)i(2+i)的共軛復(fù)數(shù)為( 。
A.1+2iB.1-2iC.-1+2iD.-1-2i

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

4.2015賽季CBA(中國(guó)男子職業(yè)籃球聯(lián)賽)總決賽于3月22號(hào)結(jié)束,北京首鋼隊(duì)4:2戰(zhàn)勝遼寧藥都隊(duì)衛(wèi)冕成功.如圖是參加此次總決賽的甲、乙兩名運(yùn)動(dòng)員在
6場(chǎng)比賽中的得分莖葉圖,兩人得分的平均數(shù)分別${\overline{x}}_{甲}$、${\overline{x}}_{乙}$,得分的方差分別為$\overline{{S}_{甲}}$、$\overline{{S}_{乙}}$,則下面正確的結(jié)論是( 。
A.${\overline{x}}_{甲}$>${\overline{x}}_{乙}$,$\overline{{S}_{甲}}$>$\overline{{S}_{乙}}$B.${\overline{x}}_{甲}$>${\overline{x}}_{乙}$,$\overline{{S}_{甲}}$<$\overline{{S}_{乙}}$
C.${\overline{x}}_{甲}$<${\overline{x}}_{乙}$,$\overline{{S}_{甲}}$>$\overline{{S}_{乙}}$D.${\overline{x}}_{甲}$<${\overline{x}}_{乙}$,$\overline{{S}_{甲}}$<$\overline{{S}_{乙}}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

14.求滿(mǎn)足下列條件的雙曲線的標(biāo)準(zhǔn)方程:
(1)與雙曲線$\frac{x^2}{16}$-$\frac{y^2}{4}$=1有公共焦點(diǎn),且過(guò)點(diǎn)(3$\sqrt{2}$,2);
(2)漸近線方程為2x±3y=0,頂點(diǎn)在y軸上,且焦距為2$\sqrt{13}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

1.已知α∈(-$\frac{π}{3}$,$\frac{2π}{3}$),tan(α-$\frac{π}{6}$)=-2,則sinα=( 。
A.$\frac{{\sqrt{5}-2\sqrt{15}}}{10}$B.$\frac{{\sqrt{5}+2\sqrt{15}}}{10}$C.$\frac{{\sqrt{15}+2\sqrt{5}}}{10}$D.$\frac{{\sqrt{15}-2\sqrt{5}}}{10}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

18.已知直線方程為(2+m)x+(1-2m)y+4-3m=0.
(1)證明:直線恒過(guò)定點(diǎn);
(2)m為何值時(shí),點(diǎn)Q(3,4)到直線的距離最大,最大值為多少?
(3)若直線分別與x軸、y軸的負(fù)半軸交于A、B兩點(diǎn),求△AOB面積的最小值及此時(shí)直線的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

16.已知f(x)=$\left\{\begin{array}{l}3{e}^{x-1},x<3\\ lo{g}_{3}({x}^{2}-6),x≥3\end{array}\right.$,則f(f($\sqrt{15}$))的值為3e.

查看答案和解析>>

同步練習(xí)冊(cè)答案