已知,,在處的切線方程為
(Ⅰ)求的單調(diào)區(qū)間與極值;
(Ⅱ)求的解析式;
(III)當(dāng)時(shí),恒成立,求的取值范圍.
(Ⅰ)的增區(qū)間為,減區(qū)間為,;
(Ⅱ) ;(III).
【解析】
試題分析:(Ⅰ)令,得, 1分
∴當(dāng)時(shí),;當(dāng)時(shí),。
∴的增區(qū)間為,減區(qū)間為,, 3分
(Ⅱ),,所以。
又
∴,∴
所以 6分
(III)當(dāng)時(shí),,令
當(dāng)時(shí),矛盾, 8分
首先證明在恒成立.
令,,故為上的減函數(shù),
,故 10分
由(Ⅰ)可知故 當(dāng)時(shí),
綜上 12分
考點(diǎn):本題主要考查導(dǎo)數(shù)的幾何意義,應(yīng)用導(dǎo)數(shù)研究函數(shù)的單調(diào)性及極(最)值,研究函數(shù)的圖象和性質(zhì),不等式恒成立問(wèn)題。
點(diǎn)評(píng):難題,不等式恒成立問(wèn)題,常常轉(zhuǎn)化成求函數(shù)的最值問(wèn)題。不等式恒成立問(wèn)題,往往要通過(guò)構(gòu)造函數(shù),研究函數(shù)的單調(diào)性、極值(最值),進(jìn)一步確定得到參數(shù)的范圍。
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源:2012-2013學(xué)年吉林省吉林市高三三模(期末)文科數(shù)學(xué)試卷(解析版) 題型:解答題
已知,,在處的切線方程為
(Ⅰ)求的單調(diào)區(qū)間與極值;
(Ⅱ)求的解析式;
(III)當(dāng)時(shí),恒成立,求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源:2013屆福建省高二下學(xué)期第一次月考理科數(shù)學(xué)試卷 題型:解答題
已知函數(shù),
,在處的切線方程為.
(Ⅰ)求實(shí)數(shù)的值;
(Ⅱ)是否總存在實(shí)數(shù),使得對(duì)任意的,總存在,使得
成立?若存在,求出實(shí)數(shù)的取值范圍;若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源:2010年山東省高二下學(xué)期期末考試數(shù)學(xué)卷 題型:解答題
(本小題滿分12分)
已知函數(shù)在處的切線方程為 ,
(1)若函數(shù)在時(shí)有極值,求的表達(dá)式;
(2)在(1)條件下,若函數(shù)在上的值域?yàn)?img src="http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/2012052019412026565016/SYS201205201942578750443150_ST.files/image009.png">,求m的取值范圍;
(3) 若函數(shù)在區(qū)間上單調(diào)遞增,求b的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源:2009-2010學(xué)年深圳高級(jí)中學(xué)高二下學(xué)期期末測(cè)試數(shù)學(xué)(理) 題型:解答題
(本小題滿分14分)已知函數(shù)在處的切線方程為 ,
(1)若函數(shù)在時(shí)有極值,求的表達(dá)式;
(2)在(1)條件下,若函數(shù)在上的值域?yàn)?img src="http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/2012051811473667185452/SYS201205181148300781226972_ST.files/image009.png">,求m的取值范圍;
(3)若函數(shù)在區(qū)間上單調(diào)遞增,求b的取值范圍. [
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com