設(shè)函數(shù)R)
(1)求f(a)的值;
(2)若對(duì)任意的a∈[0,1],函數(shù)f(x)在x∈[0,1]上的最小值恒大于1,求b的取值范圍.
【答案】分析:(1))由R),知f(a)=a3-(2a-1)a2+[a2-a-f(a)]a+b,由此能求出f(a).
=
(2)由R),知f′(x)=x2-(2a-1)x+a2-a-f′(a),由此能求出f′(a)=0.故f′(x)=x2-(2a-1)x+(a2-a)=[x-(a-1)](x-a),令f′(x)>0,得x<a-1,或x>a;令f′(x)<0,得a-1<x<a,故f(x)在(-∞,a-1]上單調(diào)遞增,在[a-1,a]上單調(diào)遞減,在[a,+∞)上單調(diào)遞增,由此能求出b的取值范圍.
解答:解:(1)∵R)
∴f(a)=a3-(2a-1)a2+[a2-a-f(a)]a+b,
∴(a+1)f(a)=-a3++a3-a2+b=,
∴f(a)==
(2)∵R)
∴f′(x)=x2-(2a-1)x+a2-a-f′(a),
∴f′(a)=a2-(2a-1)a+a2-a-f′(a),
∴f′(a)=0.
∴f′(x)=x2-(2a-1)x+(a2-a)=[x-(a-1)](x-a),
令f′(x)>0,得x<a-1,或x>a;令f′(x)<0,得a-1<x<a,
∴f(x)在(-∞,a-1]上單調(diào)遞增,在[a-1,a]上單調(diào)遞減,在[a,+∞)上單調(diào)遞增,
∵0≤a≤1,∴f(x)在x∈[0,1]上的最小值為f(a)=,
在a∈[0,1]上恒成立.
即b>-在a∈[0,1]上恒成立,
,
則g′(x)=-x2+x=-x(x-1)≥0,
∴g(x)在x∈[0,1]上單調(diào)遞增,
,

點(diǎn)評(píng):本題考查利用導(dǎo)數(shù)求閉區(qū)間上函數(shù)最值的應(yīng)用,考查運(yùn)算求解能力,推理論證能力;考查化歸與轉(zhuǎn)化思想.綜合性強(qiáng),難度大,有一定的探索性,對(duì)數(shù)學(xué)思維能力要求較高,是高考的重點(diǎn).解題時(shí)要認(rèn)真審題,仔細(xì)解答.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)函數(shù)f(x)=2cosx (cosx+
3
sinx)-1
,x∈R.
(1) 求f(x)的最小正周期T;
(2) 求f(x)的單調(diào)遞增區(qū)間.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2012•鷹潭模擬)已知函數(shù)f(x)=ax+lnx(a∈R)
(1)求f(x)的單調(diào)區(qū)間;
(2)設(shè)g(x)=x2-2x+2,若對(duì)任意x1∈(0,+∞),均存在x2∈[0,1],使得f(x1)<g(x2),求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)函數(shù)f(x)=
3
sin(x+
2
3
π)+2sin2
x
2
,x∈R

(1)求f(x)的值域;
(2)記△ABC的內(nèi)角A,B,C所對(duì)邊長(zhǎng)分別為a,b,c,若f(B)=
1
2
,b=
7
,c=3,求a的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2014•廣東模擬)設(shè)函數(shù)f(x)=
1
3
x3-
1
2
(2a-1)x2+[a2-a-f(a)]x+b,(a,b∈
R)
(1)求f(a)的值;
(2)若對(duì)任意的a∈[0,1],函數(shù)f(x)在x∈[0,1]上的最小值恒大于1,求b的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案