【題目】如圖,已知PA與圓O相切于點A,經(jīng)過點O的割線PBC交圓O于點B,C,∠APC的平分線分別交AB,AC于點D,E.
(Ⅰ)證明:∠ADE=∠AED;
(Ⅱ)若AC=AP,求 的值.

【答案】解:(Ⅰ)∵PA是切線,AB是弦,
∴∠BAP=∠C.
又∵∠APD=∠CPE,
∴∠BAP+∠APD=∠C+∠CPE.
∵∠ADE=∠BAP+∠APD,∠AED=∠C+∠CPE,
∴∠ADE=∠AED.…(5分)
(Ⅱ) 由(Ⅰ)知∠BAP=∠C,
∵∠APC=∠BPA,
∵AC=AP,
∴∠APC=∠C
∴∠APC=∠C=∠BAP.
由三角形內角和定理可知,∠APC+∠C+∠CAP=180°.
∵BC是圓O的直徑,
∴∠BAC=90°.
∴∠APC+∠C+∠BAP=180°﹣90°=90°.

在Rt△ABC中, ,即

∵在△APC與△BPA中
∠BAP=∠C,∠APB=∠CPA,
∴△APC∽△BPA.



【解析】(Ⅰ)根據(jù)弦切角定理,得到∠BAP=∠C,結合PE平分∠APC,可得∠BAP+∠APD=∠C+∠CPE,最后用三角形的外角可得∠ADE=∠AED;(Ⅱ)根據(jù)AC=AP得到∠APC=∠C,結合(I)中的結論可得∠APC=∠C=∠BAP,再在△APC中根據(jù)直徑BC得到∠PAC=90°+∠BAP,利用三角形內角和定理可得 .利用直角三角形中正切的定義,得到 ,最后通過內角相等證明出△APC∽△BPA,從而

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】已知焦點在x軸的橢圓的離心率與雙曲線3x2-y2=3的離心率互為倒數(shù),且過點,求:(1)求橢圓方程;

(2)若直線l:y=kx+m(k≠0)與橢圓交于不同的兩點M,N,點,有|MP|=|NP|,求k的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】甲、乙兩支球隊進行總決賽,比賽采用五場三勝制,即若有一隊先勝三場,則此隊為總冠軍,比賽就此結束.因兩隊實力相當,每場比賽兩隊獲勝的可能性均為二分之一.據(jù)以往資料統(tǒng)計,第一場比賽可獲得門票收入40萬元,以后每場比賽門票收入比上一場增加10萬元.

(1)求總決賽中獲得門票總收入恰好為150萬元且甲獲得總冠軍的概率;

(2)設總決賽中獲得的門票總收入為,求的分布列和數(shù)學期望

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)f(x)=lnx+ ax2﹣2bx
(1)設點a=﹣3,b=1,求f(x)的最大值;
(2)當a=0,b=﹣ 時,方程2mf(x)=x2有唯一實數(shù)解,求正數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)f(x)=ex(e=2.71828…),g(x)為其反函數(shù).
(1)求函數(shù)F(x)=g(x)﹣ax的單調區(qū)間;
(2)設直線l與f(x),g(x)均相切,切點分別為(x1 , f(x1)),(x2 , f(x2)),且x1>x2>0,求證:x1>1.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如果關于x的方程 正實數(shù)解有且僅有一個,那么實數(shù)a的取值范圍為(
A.{a|a≤0}
B.{a|a≤0或a=2}
C.{a|a≥0}
D.{a|a≥0或a=﹣2}

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】若對任意x∈A,y∈B,(AR,BR)有唯一確定的f(x,y)與之對應,則稱f(x,y)為關于x、y的二元函數(shù).現(xiàn)定義滿足下列性質的二元函數(shù)f(x,y)為關于實數(shù)x、y的廣義“距離”;
(1)非負性:f(x,y)≥0,當且僅當x=y時取等號;
(2)對稱性:f(x,y)=f(y,x);
(3)三角形不等式:f(x,y)≤f(x,z)+f(z,y)對任意的實數(shù)z均成立.
今給出三個二元函數(shù),請選出所有能夠成為關于x、y的廣義“距離”的序號:
①f(x,y)=|x﹣y|;②f(x,y)=(x﹣y)2;③
能夠成為關于的x、y的廣義“距離”的函數(shù)的序號是

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知正四棱臺ABCDA1B1C1D1中,上底面A1B1C1D1邊長為1,下底面ABCD邊長為2,側棱與底面所成的角為60°,則異面直線AD1B1C所成角的余弦值為__________

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】設f(x)=xlnx﹣ax2+(2a﹣1)x,a∈R.
(1)令g(x)=f′(x),求g(x)的單調區(qū)間;
(2)已知f(x)在x=1處取得極大值,求實數(shù)a的取值范圍.

查看答案和解析>>

同步練習冊答案