過(guò)雙曲線(xiàn)
x2
a2
-
y2
b2
=1
的左焦點(diǎn)F作⊙O:x2+y2=a2的兩條切線(xiàn),記切點(diǎn)為A,B,雙曲線(xiàn)左頂點(diǎn)為C,若∠ACB=120°,則雙曲線(xiàn)的漸近線(xiàn)方程為( 。
A.y=±
3
x
B.y=±
3
3
x
C.y=±
2
x
D.y=±
2
2
x
由題意可得:雙曲線(xiàn)的方程為
x2
a2
-
y2
b2
=1

所以雙曲線(xiàn)的漸近線(xiàn)方程為y=±
b
a
x.

因?yàn)槿簟螦CB=120°,
所以根據(jù)圖象的特征可得:∠AFO=30°,
所以c=2a,
又因?yàn)閎2=c2-a2
所以
b
a
=
3
,
所以雙曲線(xiàn)的漸近線(xiàn)方程為y=±
3
x

故選A.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

已知F是雙曲線(xiàn)x2-
y2
8
=1
的右焦點(diǎn),A(-2,
3
)
,P是雙曲線(xiàn)右支上的動(dòng)點(diǎn),則|PA|-|PF|的最小值為( 。
A.0B.2C.4D.6

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

直線(xiàn)y=k(x-1)與雙曲線(xiàn)x2-y2=4沒(méi)有公共點(diǎn),則k的取值范圍是______.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

已知曲線(xiàn)
x=4cosθ
y=2
3
sinθ
上一點(diǎn)P到點(diǎn)A(-2,0),B(2,0)的距離之差為2.則△PAB為(  )
A.銳角三角形B.直角三角形C.鈍角三角形D.等腰三角形

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

若方程
x2
n-2
+
y2
n+3
=1
表示焦點(diǎn)在y軸上的雙曲線(xiàn),則n的取值范圍( 。
A.n>2B.n<-3C.-3<n<2D.n<-3或n>2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

已知F1、F2是雙曲線(xiàn)16x2-9y2=144的焦點(diǎn),P為雙曲線(xiàn)上一點(diǎn),若|PF1||PF2|=32,則∠F1PF2=(  )
A.
π
6
B.
π
3
C.
π
2
D.
3

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

已知雙曲線(xiàn)的漸近線(xiàn)方程為
7
x+3y=0
,兩準(zhǔn)線(xiàn)的距離為
9
2
,求此雙曲線(xiàn)方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

雙曲線(xiàn)
x2
9
-
y2
16
=1
的兩個(gè)焦點(diǎn)F1、F2,點(diǎn)P在雙曲線(xiàn)上,若PF1⊥PF2,則△PF1F2面積是( 。
A.16B.32C.25D.50

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

以?huà)佄锞(xiàn)y2=12x的焦點(diǎn)為圓心,且與雙曲線(xiàn)
x2
16
-
y2
9
=1
的兩條漸近線(xiàn)相切的圓的方程為_(kāi)_____.

查看答案和解析>>

同步練習(xí)冊(cè)答案