如圖, 已知圓O的半徑為3, AB與圓D相切于A, BO與圓O相交于C, BC ="2," 則△ABC的面積為               .

 

【答案】

【解析】

試題分析:根據(jù)題意,圓O的半徑為3, AB與圓D相切于A, BO與圓O相交于C, BC ="2," ,連接0A,則可知解三角形AC=2可知,,故可知解得為

考點:圓內(nèi)性質(zhì)

點評:主要是考查了圓內(nèi)性質(zhì)的運用,屬于基礎(chǔ)題。

 

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

(A)(幾何證明選講選做題)如圖,已知Rt△ABC的兩條直角邊AC,BC的長分別為3cm,4cm,以AC為直徑作圓與斜邊AB交于點D,則BD的長為=
16
5
16
5

(B)(不等式選講選做題)關(guān)于x的不等式|x-1|+|x-2|≤a2+a+1的解集為空集,則實數(shù)a的取值范圍是
(-1,0)
(-1,0)
;
(C)(坐標系與參數(shù)方程選做題)已知極坐標的極點在直角坐標系的原點O處,極軸與x軸的正半軸重合,曲線C的參數(shù)方程為
x=3cosθ
y=sinθ
(θ為參數(shù)),直線l的極坐標方程為ρcos(θ-
π
3
)=6
.點P在曲線C上,則點P到直線l的距離的最小值為
6-
3
6-
3

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(二)選擇題(考生在A、B、C三小題中選做一題,多做按所做第一題評分)
A.(不等式選講) 函數(shù)f(x)=
|x-2|-1
的定義域為
(-∞,1]∪[3,+∞)
(-∞,1]∪[3,+∞)

B.(坐標系與參數(shù)方程)已知極點在直角坐標系的原點O處,極軸與x軸的正半軸重合,曲線C的極坐標方程為ρ=2cosθ,直線l的參數(shù)方程為
x=
3
5
t
y=1+
4
5
t
(t為參數(shù)).則曲線C上的點到直線l的最短距離為
2
5
2
5

C.(幾何證明選講)如圖,PA是圓O的切線,切點為A,PA=2.AC是圓O的直徑,PC與圓O交于B,PB=1,則AC=
2
3
2
3

查看答案和解析>>

科目:高中數(shù)學 來源:山東省聊城市2007年高考模擬試題數(shù)學理科 題型:044

如圖,已知圓O:x2+y2=4與y軸正半軸交于點P,A(-1,0),B(1,0),直線l與圓O切于點S(l不垂直于x軸),拋物線過A、B兩點且以l為準線.

(Ⅰ)當點S在圓周上運動時,求證:拋物線的焦點Q始終在某一橢圓C上,并求出該橢圓C的方程;

(Ⅱ)設(shè)M、N是(Ⅰ)中橢圓C上除短軸端點外的不同兩點,且,問:△MON的面積是否存在最大值?若存在,求出該最大值;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源:2014屆廣東省高一下學期第一次階段考試理科數(shù)學 題型:解答題

(14分)如圖7,.已知圓O和定點A(2,1),

由圓O外一點向圓O引切線PQ,切點為Q,且滿足.(1) 求實數(shù)a、b間滿足的等量關(guān)系;

(2) 求線段PQ長的最小值;(3) 若以P為圓心所作的圓P與圓O有公共點,試求半徑取最小值時圓P的方程.

 

 

查看答案和解析>>

科目:高中數(shù)學 來源:2012年陜西省西安市戶縣惠安中學高考沖刺數(shù)學試卷(三)(解析版) 題型:解答題

(二)選擇題(考生在A、B、C三小題中選做一題,多做按所做第一題評分)
A.(不等式選講) 函數(shù)的定義域為   
B.(坐標系與參數(shù)方程)已知極點在直角坐標系的原點O處,極軸與x軸的正半軸重合,曲線C的極坐標方程為ρ=2cosθ,直線l的參數(shù)方程為(t為參數(shù)).則曲線C上的點到直線l的最短距離為   
C.(幾何證明選講)如圖,PA是圓O的切線,切點為A,PA=2.AC是圓O的直徑,PC與圓O交于B,PB=1,則AC=   

查看答案和解析>>

同步練習冊答案