【題目】以下結(jié)論正確的是(
A.若a<b且c<d,則ac<bd
B.若ac2>bc2 , 則a>b
C.若a>b,c<d,則a﹣c<b﹣d
D.若0<a<b,集合A={x|x= },B={x|x= },則A?B

【答案】B
【解析】解:若a=﹣1,b=0,c=﹣1,d=0,則a<b且c<d,但ac>bd,故A錯誤;若ac2>bc2 , 則c2>0,則a>b,故B正確;
若a>b,c<d,則a﹣c>b﹣d,故C錯誤;
若0<a<b,集合A={x|x= },B={x|x= },則A與B不存在包含關(guān)系,故D錯誤;
故選:B.
【考點精析】通過靈活運(yùn)用命題的真假判斷與應(yīng)用,掌握兩個命題互為逆否命題,它們有相同的真假性;兩個命題為互逆命題或互否命題,它們的真假性沒有關(guān)系即可以解答此題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】若奇函數(shù)f(x)在(0,+∞)上是增函數(shù),且f(﹣1)=0,則不等式xf(x)>0的解集是

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知x,y滿足不等式組 ,求
(1)z=x+2y的最大值;
(2)z=x2+y2﹣10y+25的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】平面直角坐標(biāo)系中,有橢圓 (為參數(shù))和拋物線 (為參數(shù)).

(Ⅰ)是否存在這樣的值,使得該橢圓與該拋物線有四個不同的交點?請說明理由.

(Ⅱ)當(dāng)取何值時,該橢圓與該拋物線的交點與坐標(biāo)原點的距離等于這個交點與該橢圓中心的距離?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè),函數(shù).

(Ⅰ)若,求曲線處的切線方程;

(Ⅱ)若無零點,求實數(shù)的取值范圍;

(Ⅲ)若有兩個相異零點,求證: .

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】對于函數(shù)f(x)=ax2+2x﹣2a,若方程f(x)=0有相異的兩根x1 , x2
(1)若a>0,且x1<1<x2 , 求a的取值范圍;
(2)若x1﹣1,x2﹣1同號,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知c>0,設(shè)命題p:函數(shù)y=cx為減函數(shù).命題q:當(dāng)x∈[ ,2]時,函數(shù)f(x)=x+ 恒成立.如果“p或q”為真命題,“p且q”為假命題,則c的取值范圍是

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】選修4-4:坐標(biāo)系與參數(shù)方程

已知曲線的參數(shù)方程為, 為參數(shù)),以坐標(biāo)原點為極點, 軸的正半軸為極軸建立極坐標(biāo)系,曲線的極坐標(biāo)方程為.

(1)求曲線的普通方程與曲線的直角坐標(biāo)方程,并討論兩曲線公共點的個數(shù);

(2)若,求由兩曲線交點圍成的四邊形面積的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】對任意實數(shù)a,b定義運(yùn)算“⊙”:a⊙b= 設(shè)f(x)=2x+1⊙(1﹣x),若函數(shù)f(x)與函數(shù)g(x)=x2﹣6x在區(qū)間(m,m+1)上均為減函數(shù),且m∈{﹣1,0,1,3},則m的值為(
A.0
B.﹣1或0
C.0或1
D.0或1或3

查看答案和解析>>

同步練習(xí)冊答案