十個(gè)人站成一排,其中甲、乙、丙三人恰巧站在一起的概率為( 。
A、
1
15
B、
1
90
C、
1
120
D、
1
720
考點(diǎn):古典概型及其概率計(jì)算公式
專(zhuān)題:概率與統(tǒng)計(jì)
分析:先求出沒(méi)有條件的十個(gè)人站成一排的站法,再求出甲、乙、丙三人相鄰的站法,根據(jù)概率公式計(jì)算即可
解答: 解:沒(méi)有條件的十個(gè)人站成一排的站法共有
A
10
10

甲、乙、丙三人恰巧站在一起,即甲、乙、丙三人相鄰,可以把三個(gè)元素看做一個(gè)元素同其他的三個(gè)元素進(jìn)行排列,故有
A
3
3
A
8
8
,
故甲、乙、丙三人恰巧站在一起的概率P=
A
3
3
A
8
8
A
10
10
=
1
15
,
故選:A
點(diǎn)評(píng):本題考查了計(jì)數(shù)原理和古典概率的求法,屬于基礎(chǔ)題
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知向量
a
=(8,k)(k∈R),
b
=(1,3),
c
=(3,-2),且(3
a
+
b
)⊥
c
,則|
a
|=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

若|x-1|=2,則x=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

在數(shù)列{an}中,a1=
1
2
,an+1=
1
2
an+(
1
2
n+1,
(1)設(shè)bn=2nan,證明:數(shù)列{bn}是等差數(shù)列;
(2)求{an}的前n項(xiàng)和Sn

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知f(x)=
4-x+3x
2
-
|4-x-3x|
2
-m有兩個(gè)不同的零點(diǎn),則m的取值范圍是( 。
A、(-∞,3)
B、[3,+∞)
C、(0,3)
D、(3,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

某公司有男職員45名,女職員15名,按照分層抽樣的方法組建了一個(gè)4人的科研攻關(guān)小組.
(1)求某職員被抽到的概率及科研攻關(guān)小組中男、女職員的人數(shù);
(2)經(jīng)過(guò)一個(gè)月的學(xué)習(xí)、討論,這個(gè)科研攻關(guān)組決定選出兩名職員做某項(xiàng)實(shí)驗(yàn),方法是先從小組里選出1名職員做實(shí)驗(yàn),該職員做完后,再?gòu)男〗M內(nèi)剩下的職員中選一名做實(shí)驗(yàn),求選出的兩名職員中恰有一名女職員的概率;
(3)實(shí)驗(yàn)結(jié)束后,第一次做實(shí)驗(yàn)的職員得到的實(shí)驗(yàn)數(shù)據(jù)為68,70,71,72,74,第二次做實(shí)驗(yàn)的職員得到的實(shí)驗(yàn)數(shù)據(jù)為69,70,70,72,74,請(qǐng)問(wèn)哪位職員的實(shí)驗(yàn)更穩(wěn)定?并說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)橢圓C:
y2
a2
+
x2
b2
=1
(a>b>0)的離心率為e=
2
2
,點(diǎn)M是橢圓上的一點(diǎn),且點(diǎn)M到橢圓C兩焦點(diǎn)的距離之和為4.
(Ⅰ)求橢圓C的方程;
(Ⅱ)若橢圓C上一動(dòng)點(diǎn)P(x0,y0)關(guān)于直線y=x的對(duì)稱(chēng)點(diǎn)為P1(x1,y1),求4x1-3y1的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)f(x)=x3-mx2-2x+5
(1)當(dāng)m=
1
2
時(shí),求f(x)的單調(diào)區(qū)間;
(2)若m=
1
2
且0≤x≤2時(shí),f(x)<k總成立,求實(shí)數(shù)k的取值范圍;
(3)若f(x)在[0,1]上有極值點(diǎn),求m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)集合A={x|ax>1,a≤0},B={x||x|>1},若A⊆B,則實(shí)數(shù)a的取值范圍是( 。
A、[-1,0]
B、[-1,0)
C、(-1,0]
D、(-∞,-1)

查看答案和解析>>

同步練習(xí)冊(cè)答案