下列各個圖形中,異面直線的畫法不妥的是((  )
A、
B、
C、
D、
考點:空間中直線與直線之間的位置關(guān)系,異面直線
專題:空間位置關(guān)系與距離
分析:利用異面直線的定義求解.
解答: 解:觀察四個選項,
A、C、D中都有明顯地看出a,b暨不相交,又不平行,是異面直線,
在B中,給人的感覺是直線a,b雖然分別位于不同的平面α和β,
但是a,b分別與α與β的交線平行,由平行的傳遞性知a與b平行,所以a,b不是異面直線.
故C的畫法不妥.
故選:C.
點評:本題考查異面直線畫法正誤的判斷,是基礎(chǔ)題,解題時要熟練掌握異面直線的定義.
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學(xué) 來源: 題型:

在等差數(shù)列{an}中,若a10=0,則有等式a1+a2+…+an=a1+a2+…+a19-n(n<19,n∈N*)成立.類比上述性質(zhì),在等比數(shù)列{bn}中,若b11=1,則有( 。
A、b1•b2•…•bn=b1•b2•…•b19-n
B、b1•b2•…•bn=b1•b2•…•b21-n
C、b1+b2+…+bn=b1+b2+…+b19-n
D、b1+b2+…+bn=b1+b2+…+b21-n

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知
a
=(2,1),
b
=(3,4),則
a
b
的值為(  )
A、24B、14C、11D、10

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知f(x)=
3x,x≥0
πx,x<0
,若對任意x∈[-1-a,a-1],不等式f(
2
x-a)≥[f(x)]2恒成立,則實數(shù)a的取值范圍是( 。
A、(0,
4-
2
7
]
B、(0,
4-
3
7
]
C、(1,
4-
2
7
]
D、(1,
2+
2
7
]

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

命題“若a-2>b-2,則a>b”的逆命題是(  )
A、若a>b,則a-2>b-2
B、若a≥b,則a-2≥b-2
C、若a<b,則a-2<b-2
D、若a≤b,則a-2≤b-2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知
a
=(2,1),
b
=(x,1),且
a
+
b
與2
a
-
b
平行,則x等于( 。
A、10B、-10C、2D、-2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

數(shù)列{an}滿足an+1=2an+3,其中a4=29,則這個數(shù)列的首項是(  )
A、1B、2C、3D、4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在△ABC中,a,b,c分別是角A,B,C的對邊,則下列一定是△ABC面積的是( 。
A、
1
2
ab
B、
1
2
abtanC
C、
1
2
abcosC
D、
1
2
absinC

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知平面上的線段l及點P,任取l上一點Q,線段PQ長度的最小值稱為點P到線段l的距離,記作d(P,l).
(Ⅰ)求點P(1,1)到線段l:x-y-3=0,(3≤x≤5)的距離d(P,l);
(Ⅱ)設(shè)l是長為2的線段,求點的集合D={P|d(P,l)≤1}所表示的圖形面積;
(Ⅲ)寫出到兩條線段l1,l2距離相等的點的集合Ω={P|d(P,l1)=d(P,l2)},并在直角坐標系中作出相應(yīng)的軌跡.其中l(wèi)1=AB,l2=CD,A(1,3),B(1,0),C(-1,3),D(-1,-2).

查看答案和解析>>

同步練習冊答案