5.給出如下列聯(lián)表(公式見卷首)
患心臟病患其它病合  計
高血壓201030
不高血壓305080
合  計5060110
P(K2≥10.828)≈0.001,P(K2≥6.635)≈0.010
參照公式,得到的正確結(jié)論是( 。
A.有99%以上的把握認(rèn)為“高血壓與患心臟病無關(guān)”
B.有99%以上的把握認(rèn)為“高血壓與患心臟病有關(guān)”
C.在犯錯誤的概率不超過0.1%的前提下,認(rèn)為“高血壓與患心臟病無關(guān)”
D.在犯錯誤的概率不超過0.1%的前提下,認(rèn)為“高血壓與患心臟病有關(guān)”

分析 由P(K2≥6.635)≈0.010得到統(tǒng)計結(jié)論.

解答 解:因為${κ^2}=\frac{{110{{(20×50-10×30)}^2}}}{30×60×80×50}=7.486$,所以P(K2≥6.635)≈0.010,
因而有99%以上的把握認(rèn)為“高血壓與患心臟病有關(guān)”.
故選:B.

點評 本題考查了獨(dú)立性檢驗的應(yīng)用,考查了學(xué)生對觀測值的理解,是基礎(chǔ)的概念題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.直線x-y-k=0與圓(x-1)2+y2=2有兩個不同交點的一個充分不必要條件可以是( 。
A.(-1,3)B.[-1,3]C.(0,3)D.(-∞,-1)∪(3,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.設(shè)向量$\overrightarrow{a}$=(1,m),$\overrightarrow$=(m-1,2),且$\overrightarrow{a}$≠$\overrightarrow$,若($\overrightarrow{a}$-$\overrightarrow$)⊥$\overrightarrow{a}$,則實數(shù)m=(  )
A.2B.1C.$\frac{1}{3}$D.$\frac{1}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.設(shè)函數(shù)f(x)=n-1,x∈[n,n+1],n∈N,則函數(shù)g(x)=f(x)-log2x的零點個數(shù)是( 。
A.1B.2C.3D.無數(shù)個

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

20.復(fù)數(shù)z=$\frac{2+mi}{1+i}$(m∈R)是純虛數(shù),則m=-2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

10.甲、乙兩艘輪船駛向一個不能同時停泊兩艘輪船的碼頭,它們在一晝夜內(nèi)任何時刻到達(dá)是等可能的.如果甲船和乙船的停泊時間都是4小時,求它們中的任何一條船不需要等待碼頭空出的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

17.已知a、b∈R+,且a+b=1,則$\frac{1}{a}+\frac{1}$≥m,恒成立的實數(shù)m的最大值是4.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.已知f1(x)=cosx,f2(x)=f1′(x),f3(x)=f2′(x),…,fn+1(x)=fn′(x),則f2016(x)=(  )
A.sinxB.-sinxC.cosxD.-cosx

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

15.已知函數(shù)f(x)=cos2x+2$\sqrt{3}$sinxcosx.
(1)求f(x)的最小正周期和單調(diào)遞增區(qū)間;
(2)在△ABC中,角A、B、C所對邊分別是a,b,c,若f($\frac{A}{2}$)=2,且b+c=4,求實數(shù)a的最小值.

查看答案和解析>>

同步練習(xí)冊答案