函數(shù)f(x)=2sin(ωx+φ)的圖象,其部分圖象如圖所示:則f(0)=(  )
分析:先確定函數(shù)的周期,求得最高點的坐標,從而確定函數(shù)的解析式,即可求得結(jié)論.
解答:解:由題意,
3
2
T=
13π
4
-
π
4
,∴T=2π,∴ω=
T
=1
由圖可得,最高點的坐標為(
4
,2),∴2=2sin(
4
+φ),∴φ可取-
π
4

∴f(x)=2sin(x-
π
4

∴f(0)=2sin(-
π
4
)=-
2

故選B.
點評:本題考查函數(shù)解析式的確定,考查學生的計算能力,屬于基礎題.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=2sinωx(ω>0)在區(qū)間[-
π
3
,
π
4
]
上的最小值是-2,則ω的最小值是
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

若函數(shù)f(x)=2sinωx(ω>0)在[-
3
3
]
上單調(diào)遞增,則ω的最大值為
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2013•鹽城三模)已知函數(shù)f (x)=2sin(ωx+?)(ω>0)的部分圖象如圖所示,則ω=
2
3
2
3

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=2sinωxcosωx-2
3
sin2ωx+
3
(ω>0),直線x=x1,x=x2是函數(shù)y=f(x)的圖象的任意兩條對稱軸,且|x1-x2|的最小值為
π
2

(I)求ω的值;
(II)求函數(shù)f(x)的單調(diào)增區(qū)間;
(III)若f(a)=
2
3
,求sin(
5
6
π-4a)的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

設函數(shù)f(x)=2sin(x-
π
3
)cosx.
(Ⅰ)求f(x)的最小正周期;
(Ⅱ)討論f(x)在[0,
π
2
]的單調(diào)性.

查看答案和解析>>

同步練習冊答案