【題目】已知數(shù)列{an}的通項為an , 前n項和為sn , 且an是sn與2的等差中項,數(shù)列{bn}中,b1=1,點P(bn , bn+1)在直線x﹣y+2=0上. (Ⅰ)求數(shù)列{an}、{bn}的通項公式an , bn
(Ⅱ)設{bn}的前n項和為Bn , 試比較 與2的大。
(Ⅲ)設Tn= ,若對一切正整數(shù)n,Tn<c(c∈Z)恒成立,求c的最小值.
【答案】解:(Ⅰ)由題意可得2an=sn+2, 當n=1時,a1=2,
當n≥2時,有2an﹣1=sn﹣1+2,兩式相減,整理得an=2an﹣1即數(shù)列{an}是以2為首項,2為公比的等比數(shù)列,故an=2n .
點P(bn , bn+1)在直線x﹣y+2=0上得出bn﹣bn+1+2=0,即bn+1﹣bn=2,
即數(shù)列{bn}是以1為首項,2為公差的等差數(shù)列,
因此bn=2n﹣1.
(Ⅱ)Bn=1+3+5+…+(2n﹣1)=n2
∴
= .
(Ⅲ)Tn= ①
②
① ﹣②得
∴
又
∴滿足條件Tn<c的最小值整數(shù)c=3
【解析】(Ⅰ)利用已知條件得出數(shù)列的通項和前n項和之間的等式關系,再結合二者間的基本關系,得出數(shù)列{an}的通項公式,根據(jù){bn}的相鄰兩項滿足的關系得出遞推關系,進一步求出其通項公式;(Ⅱ)利用放縮法轉化各項是解決該問題的關鍵,將所求的各項放縮轉化為能求和的一個數(shù)列的各項估計其和,進而達到比較大小的目的;(Ⅲ)利用錯位相減法進行求解Tn是解決本題的關鍵,然后對相應的和式進行估計加以解決.
【考點精析】本題主要考查了數(shù)列的前n項和的相關知識點,需要掌握數(shù)列{an}的前n項和sn與通項an的關系才能正確解答此題.
科目:高中數(shù)學 來源: 題型:
【題目】某創(chuàng)業(yè)投資公司擬投資開發(fā)某種新能源產(chǎn)品,估計能獲得10萬元到1 000萬元的投資收益.現(xiàn)準備制定一個對科研課題組的獎勵方案:獎金y(單位:萬元)隨投資收益x(單位:萬元)的增加而增加,且獎金不超過9萬元,同時獎金不超過投資收益的20%.
(1)請分析函數(shù)y= +1是否符合公司要求的獎勵函數(shù)模型,并說明原因;
(2)若該公司采用函數(shù)模型y= 作為獎勵函數(shù)模型,試確定最小的正整數(shù)a的值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】設各項均為正數(shù)的數(shù)列的前n項和為,滿足,且,公比大于1的等比數(shù)列滿足, .
(1)求證數(shù)列是等差數(shù)列,并求其通項公式;
(2)若,求數(shù)列的前n項和;
(3)在(2)的條件下,若對一切正整數(shù)n恒成立,求實數(shù)t的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某大學為調研學生在, 兩家餐廳用餐的滿意度,從在, 兩家餐廳都用過餐的學生中隨機抽取了100人,每人分別對這兩家餐廳進行評分,滿分均為60分.
整理評分數(shù)據(jù),將分數(shù)以10為組距分成6組: , , , , , ,得到餐廳分數(shù)的頻率分布直方圖,和餐廳分數(shù)的頻數(shù)分布表:
定義學生對餐廳評價的“滿意度指數(shù)”如下:
分數(shù) | |||
滿意度指數(shù) |
(Ⅰ)在抽樣的100人中,求對餐廳評價“滿意度指數(shù)”為0的人數(shù);
(Ⅱ)從該校在, 兩家餐廳都用過餐的學生中隨機抽取1人進行調查,試估計其對餐廳評價的“滿意度指數(shù)”比對餐廳評價的“滿意度指數(shù)”高的概率;
(Ⅲ)如果從, 兩家餐廳中選擇一家用餐,你會選擇哪一家?說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù),其中.
(Ⅰ)求函數(shù)的零點個數(shù);
(Ⅱ)證明: 是函數(shù)存在最小值的充分而不必要條件.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知圓與直線相切.
(1)若直線與圓交于兩點,求;
(2)設圓與軸的負半軸的交點為,過點作兩條斜率分別為的直線交圓于兩點,且,試證明直線恒過一定點,并求出該定點的坐標.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知點在拋物線上,且到拋物線的焦點的距離等于2.
求拋物線的方程;
若直線與拋物線相交于兩點,且為坐標原點),求證直線恒過軸上的某定點,并求出該定點坐標.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某公司生產(chǎn)電飯煲,每年需投入固定成本40萬元,每生產(chǎn)1萬件還需另投入16萬元的變動成本,設該公司一年內(nèi)共生產(chǎn)電飯煲萬件并全部銷售完,每一萬件的銷售收入為萬元,且(),該公司在電飯煲的生產(chǎn)中所獲年利潤為(萬元),(注:利潤=銷售收入-成本)
(1)寫出年利潤(萬元)關于年產(chǎn)量(萬件)的函數(shù)解析式,并求年利潤的最大值;
(2)為了讓年利潤不低于2360萬元,求年產(chǎn)量的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】我國是世界上嚴重缺水的國家,某市政府為了鼓勵居民節(jié)約用水,計劃調整居民生活用水收費方案,擬確定一個合理的月用水量標準(噸),一位居民的月用水量不超過的部分按平價收費,超過的部分按議價收費.為了了解居民用水情況,通過抽樣,獲得了某年100位居民每人的月均用水量(單位:噸),將數(shù)據(jù)按照, , , 分成9組,制成了如圖所示的頻率分布直方圖.
(Ⅰ)求直方圖中的值;
(Ⅱ)若將頻率視為概率,從該城市居民中隨機抽取3人,記這3人中月均用水量不低于3噸的人數(shù)為,求的分布列與數(shù)學期望.
(Ⅲ)若該市政府希望使85%的居民每月的用水量不超過標準(噸),估計的值(精確到0.01),并說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com