如圖2,已知任意兩個(gè)非零向量a、b,試作=a+b,=a+2b,=a+3b.你能判斷A、B、C三點(diǎn)之間的位置關(guān)系嗎?為什么?

圖2

活動(dòng):本例給出了利用向量共線判斷三點(diǎn)共線的方法,這是判斷三點(diǎn)共線常用的方法.教學(xué)中可以先引導(dǎo)學(xué)生作圖,通過(guò)觀察圖形得到A,B,C三點(diǎn)共線的猜想,再將平面幾何中判斷三點(diǎn)共線的方法轉(zhuǎn)化為用向量共線證明三點(diǎn)共線.本題只要引導(dǎo)學(xué)生理清思路,具體過(guò)程可由學(xué)生自己完成.另外,本題是一個(gè)很好的與信息技術(shù)整合的題材,教學(xué)中可以通過(guò)計(jì)算機(jī)作圖,進(jìn)行動(dòng)態(tài)演示,揭示向量ab變化過(guò)程中,A、B、C三點(diǎn)始終在同一條直線上的規(guī)律.

圖3

解:如圖3,分別作向量、、,過(guò)點(diǎn)A、C作直線AC.觀察發(fā)現(xiàn),不論向量a、b怎樣變化,點(diǎn)B始終在直線AC上,猜想A、B、C三點(diǎn)共線.

事實(shí)上,因?yàn)?SUB>=-=a+2b-(a+b)=b,

=-=a+3b-(a+b)=2b,

于是=2.

所以A、B、C三點(diǎn)共線.

點(diǎn)評(píng):關(guān)于三點(diǎn)共線問(wèn)題,學(xué)生接觸較多,這里是用向量證明三點(diǎn)共線,方法是必須先證明兩個(gè)向量共線,并且有公共點(diǎn).教師引導(dǎo)學(xué)生解完后進(jìn)行反思,體會(huì)向量證法的獨(dú)特新穎.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

下列四個(gè)命題中,真命題的序號(hào)有
①③④
①③④
(寫(xiě)出所有真命題的序號(hào)).
①兩個(gè)相互垂直的平面,一個(gè)平面內(nèi)的任意一直線必垂直于另一平面內(nèi)的無(wú)數(shù)條直線.
②圓x2+y2+4x+2y+1=0與直線y=
1
2
x相交,所得弦長(zhǎng)為2.
③若sin(α+β)=
1
2
,sin(α-β)=
1
3
,則tanαcotβ=5.
④如圖,已知正方體ABCD-A1B1C1D1,P為底面ABCD內(nèi)一動(dòng)點(diǎn),P到平面AA1D1D的距離與到直線CC1的距離相等,則P點(diǎn)的軌跡是拋物線的一部分.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(1)如圖,已知α、β是坐標(biāo)平面內(nèi)的任意兩個(gè)角,且0≤α-β≤π,證明兩角差的余弦公式:cos(α-β)=cosαcosβ+sinαsinβ;
(2)已知α∈(0,
π
2
),β∈(
π
2
,π)
,且cosβ=-
1
3
,sin(α+β)=
7
9
,求2cos2α+cos2α的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖,已知點(diǎn)A(-2,0),點(diǎn)P是⊙B:(x-2)2+y2=36上任意一點(diǎn),線段AP的垂直平分線交BP于點(diǎn)Q,點(diǎn)Q的軌跡記為曲線C.
(Ⅰ)求曲線C的方程;
(Ⅱ)已知⊙O:x2+y2=r2(r>0)的切線l總與曲線C有兩個(gè)交點(diǎn)M、N,并且其中一條切線滿足∠MON>90°,求證:對(duì)于任意一條切線l總有∠MON>90°.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2012•江蘇二模)如圖,已知橢圓C:
x2
4
+y2=1
,A、B是四條直線x=±2,y=±1所圍成的兩個(gè)頂點(diǎn).
(1)設(shè)P是橢圓C上任意一點(diǎn),若
OP
=m
OA
+n
OB
,求證:動(dòng)點(diǎn)Q(m,n)在定圓上運(yùn)動(dòng),并求出定圓的方程;
(2)若M、N是橢圓C上兩個(gè)動(dòng)點(diǎn),且直線OM、ON的斜率之積等于直線OA、OB的斜率之積,試探求△OMN的面積是否為定值,說(shuō)明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案