精英家教網 > 高中數學 > 題目詳情
已知
a
=(
3
,cosx),
b
=(sinx,-1),函數f(x)=
a
b
的圖象向左平移m個單位(m>0),若所得圖象對應的函數為偶函數,則m的最小值是
 
考點:函數y=Asin(ωx+φ)的圖象變換,平面向量數量積的運算
專題:三角函數的求值,平面向量及應用
分析:由條件利用兩個向量的數量積公式求得f(x)=2sin(x-
π
6
),再根據函數y=Asin(ωx+φ)的圖象變換規(guī)律,余弦函數的圖象的對稱性m-
π
6
=kπ+
π
2
,k∈z,由此求得m的最小值.
解答: 解:函數f(x)=
a
b
=
3
sinx-cosx=2sin(x-
π
6
),把f(x)的圖象向左平移m個單位(m>0),
所得函數的解析式為y=2sin(x+m-
π
6
),由所得圖象對應的函數為偶函數,可得m-
π
6
=kπ+
π
2
,k∈z.
∴m的最小值是
3
,
故答案為:
3
點評:本題主要考查兩個向量的數量積公式、函數y=Asin(ωx+φ)的圖象變換規(guī)律,余弦函數的圖象的對稱性,屬于基礎題.
練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

點P在圓x2+y2=2上移動,PQ⊥x軸于Q,動點M滿足
QP
=
2QM
,
(Ⅰ)求動點M的軌跡C的方程;
(Ⅱ)若動直線x-
2
y+m=0與曲線C交于A,B兩點,在第一象限內曲線C上是否存在一點M使MA與MB的斜率互為相反數?若存在,求出點M的坐標;若不存在,說明理由.

查看答案和解析>>

科目:高中數學 來源: 題型:

某商店購進一批手機(共40臺),銷售該手機x(臺)與銷售總利潤y(元)之間有這樣的關系:y=-x2+80x-100(x≤40,x∈N*).
(1)若該商店銷售手機的利潤不低于600元,則至少應銷售多少臺手機?
(2)該商店銷售手機的最大平均利潤是多少元?(平均利潤=銷售總利潤÷銷售量).

查看答案和解析>>

科目:高中數學 來源: 題型:

乘積(a+b+c+d)(r+s+t)(x+y)展開后共有
 
項(用數字作答).

查看答案和解析>>

科目:高中數學 來源: 題型:

已知tanα=2,則
sinα+2cosα
2sinα-cosα
的值等于
 

查看答案和解析>>

科目:高中數學 來源: 題型:

已知圓C經過兩點A(6,0),B(-2,2),且圓心在直線2x-y=1上,則圓C的標準方程為
 

查看答案和解析>>

科目:高中數學 來源: 題型:

已知兩曲線參數方程分別為 
x=
3
cosθ
y=sinθ
(0≤θ<π)和
x=
3
2
t2
y=t
(t∈R),它們的交點坐標為
 

查看答案和解析>>

科目:高中數學 來源: 題型:

函數y=1+loga(2-x)(a>0,a≠1)的圖象所過定點的坐標為
 

查看答案和解析>>

科目:高中數學 來源: 題型:

某校為了解高三男生的身體狀況,檢測了全部480名高三男生的體重(單位:kg),所得數據都在區(qū)間[50,75]中,其頻率分布直方圖如圖所示.若圖中從左到右的前3個小組的頻率之比為1:2:3,則體重小于60kg的高三男生人數為
 

查看答案和解析>>

同步練習冊答案