函數(shù)y=
-x2+4x+5
的值域為
 
考點:函數(shù)的值域
專題:函數(shù)的性質(zhì)及應用
分析:令f(x)=-x2+4x+5=-(x-2)2+9,再根據(jù)-x2+4x+5≥0,從而求出函數(shù)的值域.
解答: 解:令f(x)=-x2+4x+5=-(x-2)2+9,
∵-x2+4x+5≥0,
∴0≤f(x)≤9,
∴0≤y≤3,
故答案為:[0,3].
點評:本題考查了函數(shù)的值域問題,考查了二次函數(shù)的性質(zhì),二次根式的性質(zhì),是一道基礎題.
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

三個數(shù)a=0.22,b=log20.2,c=20.2,則a、b、c之間的大小關(guān)系是
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知x,y滿足條件
x-y+5≥0
x+y≥0
x≤3
,則x-2y的最小值為
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知(x-
2a
x
6的展開式中常數(shù)項為-160,則常數(shù)a=( 。
A、
1
2
B、-
1
2
C、1
D、-1

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

如圖,直三棱柱ABC-A1B1C1中,AC⊥BC,AC=BC=
1
2
AA1,D是棱AA1的中點.
(Ⅰ)證明:C1D⊥平面BDC;
(Ⅱ)求二面角C-BC1-D的余弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

某電器公司生產(chǎn)A型電腦.2003年這種電腦每臺平均生產(chǎn)成本為5000元,并以純利潤20%確定出廠價.從2004年開始,公司通過更新設備和加強管理,使生產(chǎn)成本逐年降低.到2007年,盡管A型電腦出廠價僅是2003年出廠價的80%,但卻實現(xiàn)了50%純利潤的高效益.
(1)求2007年每臺A型電腦的生產(chǎn)成本;
(2)以2003年的生產(chǎn)成本為基數(shù),求2003年至2007年生產(chǎn)成本平均每年降低的百分數(shù)(精確到0.01,以下數(shù)據(jù)可供參考:
5
=2.236,
6
=2.449)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)的定義域是{x|x≠0,x∈R},對定義域內(nèi)任意x1,x2都有f(x1x2)=f(x1)+f(x2),且當x>1時f(x)>0,f(2)=1;
(1)求f(1)、f(-1);
(2)求證:f(x)是偶函數(shù);
(3)求證:f(x)在(0,+∞)是增函數(shù);
(4)解不等式f(x2-2x+1)<2.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

在直角坐標平面內(nèi),點P是圓O1:(x+2)2+y2=1上任意一點,點Q是圓O2:(x-2)2+y2=1上任意一點,動點M滿足|MP|max+|MQ|min=10,則點M的軌跡方程為
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=Asin(ωx+φ)(A>0,ω>0,|φ|<
π
2
)的圖象如圖所示.
(1)求函數(shù)f(x)的解析式;
(2)求函數(shù)f(x)的單調(diào)增區(qū)間;
(3)若x∈[-
π
2
,0],求函數(shù)f(x)的值域.

查看答案和解析>>

同步練習冊答案