6.已知復數(shù)z滿足(3+4i)z=25,則z對應的點在( 。
A.第一象限B.第二象限C.第三象限D.第四象限

分析 利用復數(shù)的運算法則、幾何意義即可得出.

解答 解:復數(shù)z滿足(3+4i)z=25,∴(3-4i)(3+4i)z=25(3-4i),∴z=3-4i.
則z對應的點(3,-4)在第四象限.
故選:D.

點評 本題考查了復數(shù)的運算法則、幾何意義,考查了推理能力與計算能力,屬于基礎題.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:填空題

6.當x>1時,不等式x+$\frac{1}{x-1}$≥a恒成立,則實數(shù)a的取值范圍是(-∞,3].

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

7.如圖,已知⊙O1、⊙O2的半徑分別為r1、r2,⊙O2經(jīng)過點O1,且兩圓相交于點A、B,C為⊙O2上的點,連接AC交⊙O1于點D,再連接BC、BD、AO1、AO2、O1O2有如下四個結論:①∠BDC=∠AO1O2;②$\frac{BD}{BC}$=$\frac{{r}_{1}}{{r}_{2}}$③AD=DC  ④BC=DC,其中正確結論的序號為①②④.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

14.如圖所示的程序框圖,若輸入m=8,n=3,則輸出的S值為( 。
A.56B.336C.360D.1440

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

1.設A(x1,y1),B(x2,y2)是函數(shù)$f(x)=\frac{1}{2}+{log_2}\frac{x}{1-x}$的圖象上任意兩點,且$\overrightarrow{OM}=\frac{1}{2}({\overrightarrow{OA}+\overrightarrow{OB}})$,已知點M的橫坐標為$\frac{1}{2}$,則M點的縱坐標為$\frac{1}{2}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

11.求函數(shù)$f(x)={log_2}(2sinx-1)+\sqrt{\sqrt{2}+2cosx}$的定義域.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

18.復數(shù)${(\frac{1-i}{{\sqrt{2}}})^2}=a+bi(a,b∈R,i$是虛數(shù)單位),則a的值為( 。
A.0B.1C.2D.-1

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

15.${∫}_{4}^{6}$$\sqrt{-{x}^{2}+8x-12}$dx=π.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

16.某中學高中學生有900名.為了考察他們的體重狀況,打算抽取容量為45的一個樣本.已知高一有400名學生,高二有300名學生,高三有200名學生.若采取分層抽樣的辦法抽取,則高二學生需要抽取的學生個數(shù)為( 。
A.20人B.15人C.10人D.5人

查看答案和解析>>

同步練習冊答案