【題目】已知函數(shù)
(1)當(dāng)時(shí),求方程的解;
(2)若方程在上有實(shí)數(shù)根,求實(shí)數(shù)的取值范圍;
(3)當(dāng)時(shí),若對(duì)任意的,總存在,使成立,求實(shí)數(shù)的取值范圍.
【答案】(1);(2) [-8,0];(3).
【解析】
(1)當(dāng)時(shí),方程為,
解得
(2)因?yàn)楹瘮?shù)=x2-4x+a+3的對(duì)稱軸是x=2,
所以在區(qū)間[-1,1]上是減函數(shù),
因?yàn)楹瘮?shù)在區(qū)間[-1,1]上存在零點(diǎn),則必有:
即,解得,
故所求實(shí)數(shù)a的取值范圍為[-8,0] .
(3)若對(duì)任意的x1∈[1,4],總存在x2∈[1,4],使f(x1)=g(x2)成立,只需函數(shù)y=f(x)的值域?yàn)楹瘮?shù)y=g(x)的值域的子集.
=x2-4x+3,x∈[1,4]的值域?yàn)?/span>[-1,3],下求g(x)=mx+5-2m的值域.
①當(dāng)m=0時(shí),g(x)=5-2m為常數(shù),不符合題意舍去;
②當(dāng)m>0時(shí),g(x)的值域?yàn)?/span>[5-m,5+2m],要使[-1,3][5-m,5+2m],
需,解得m≥6;
③當(dāng)m<0時(shí),g(x)的值域?yàn)?/span>[5+2m,5-m],要使[-1,3][5+2m,5-m],
需,解得m≤-3;
綜上,m的取值范圍為.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù) 的一段圖像如圖所示.
(1)求此函數(shù)的解析式;
(2)求此函數(shù)在上的單調(diào)遞增區(qū)間.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)(0<φ<π)
(1)當(dāng)φ時(shí),在給定的坐標(biāo)系內(nèi),用“五點(diǎn)法”做出函數(shù)f(x)在一個(gè)周期內(nèi)的圖象;
(2)若函數(shù)f(x)為偶函數(shù),求φ的值;
(3)在(2)的條件下,求函數(shù)在[﹣π,π]上的單調(diào)遞減區(qū)間.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù).
(1)試作出的圖象,并根據(jù)圖象寫出的單調(diào)區(qū)間;
(2)若函數(shù)有兩個(gè)零點(diǎn),求實(shí)數(shù)b的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè)函數(shù).
(1)當(dāng)時(shí),求函數(shù)的最大值;
(2)令,()其圖象上任意一點(diǎn)處切線的斜率恒成立,求實(shí)數(shù)的取值范圍;
(3)當(dāng),,方程有唯一實(shí)數(shù)解,求正數(shù)的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某投資公司計(jì)劃投資,兩種金融產(chǎn)品,根據(jù)市場(chǎng)調(diào)查與預(yù)測(cè),產(chǎn)品的利潤(rùn)與投資金額的函數(shù)關(guān)系為,產(chǎn)品的利潤(rùn)與投資金額的函數(shù)關(guān)系為.(注:利潤(rùn)與投資金額單位:萬(wàn)元)
(1)該公司已有100萬(wàn)元資金,并全部投入,兩種產(chǎn)品中,其中萬(wàn)元資金投入產(chǎn)品,試把,兩種產(chǎn)品利潤(rùn)總和表示為的函數(shù),并寫出定義域;
(2)試問(wèn):怎樣分配這100萬(wàn)元資金,才能使公司獲得最大利潤(rùn)?其最大利潤(rùn)為多少萬(wàn)元?
【答案】(1);(2)20,28.
【解析】
(1)設(shè)投入產(chǎn)品萬(wàn)元,則投入產(chǎn)品萬(wàn)元,根據(jù)題目所給兩個(gè)產(chǎn)品利潤(rùn)的函數(shù)關(guān)系式,求得兩種產(chǎn)品利潤(rùn)總和的表達(dá)式.(2)利用基本不等式求得利潤(rùn)的最大值,并利用基本不等式等號(hào)成立的條件求得資金的分配方法.
(1)其中萬(wàn)元資金投入產(chǎn)品,則剩余的(萬(wàn)元)資金投入產(chǎn)品,
利潤(rùn)總和為: ,
(2)因?yàn)?/span>,
所以由基本不等式得:,
當(dāng)且僅當(dāng)時(shí),即:時(shí)獲得最大利潤(rùn)28萬(wàn).
此時(shí)投入A產(chǎn)品20萬(wàn)元,B產(chǎn)品80萬(wàn)元.
【點(diǎn)睛】
本小題主要考查利用函數(shù)求解實(shí)際應(yīng)用問(wèn)題,考查利用基本不等式求最大值,屬于中檔題.
【題型】解答題
【結(jié)束】
20
【題目】已知曲線.
(1)求曲線在處的切線方程;
(2)若曲線在點(diǎn)處的切線與曲線相切,求的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖所示,在五面體中,四邊形為菱形,且,為的中點(diǎn).
(1)求證:平面;
(2)若平面平面,求點(diǎn)到平面的距離.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在測(cè)試中,客觀題難度的計(jì)算公式為,其中為第題的難度, 為答對(duì)該題的人數(shù), 為參加測(cè)試的總?cè)藬?shù).現(xiàn)對(duì)某校高三年級(jí)120名學(xué)生進(jìn)行一次測(cè)試,共5道客觀題.測(cè)試前根據(jù)對(duì)學(xué)生的了解,預(yù)估了每道題的難度,如下表所示:
題號(hào) | 1 | 2 | 3 | 4 | 5 |
考前預(yù)估難度 | 0.9 | 0.8 | 0.7 | 0.6 | 0.4 |
測(cè)試后,從中隨機(jī)抽取了10名學(xué)生,將他們編號(hào)后統(tǒng)計(jì)各題的作答情況,如下表所示(“√”表示答對(duì),“×”表示答錯(cuò)):
學(xué)生編號(hào) 題號(hào) | 1 | 2 | 3 | 4 | 5 |
1 | × | √ | √ | √ | √ |
2 | √ | √ | √ | √ | × |
3 | √ | √ | √ | √ | × |
4 | √ | √ | √ | × | × |
5 | √ | √ | √ | √ | √ |
6 | √ | × | × | √ | × |
7 | × | √ | √ | √ | × |
8 | √ | × | × | × | × |
9 | √ | √ | × | × | × |
10 | √ | √ | √ | √ | × |
(Ⅰ)根據(jù)題中數(shù)據(jù),將抽樣的10名學(xué)生每道題實(shí)測(cè)的答對(duì)人數(shù)及相應(yīng)的實(shí)測(cè)難度填入下表,并估計(jì)這120名學(xué)生中第5題的實(shí)測(cè)答對(duì)人數(shù);
題號(hào) | 1 | 2 | 3 | 4 | 5 |
實(shí)測(cè)答對(duì)人數(shù) | |||||
實(shí)測(cè)難度 |
(Ⅱ)從編號(hào)為1到5的5人中隨機(jī)抽取2人,求恰好有1人答對(duì)第5題的概率;
(Ⅲ)定義統(tǒng)計(jì)量,其中為第題的實(shí)測(cè)難度, 為第題的預(yù)估難度.規(guī)定:若,則稱該次測(cè)試的難度預(yù)估合理,否則為不合理.判斷本次測(cè)試的難度預(yù)估是否合理.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某校高一新生共有320人,其中男生192人,女生128人.為了解高一新生對(duì)數(shù)學(xué)選修課程的看法,采用分層抽樣的方法從高一新生中抽取5人進(jìn)行訪談.
(Ⅰ)這5人中男生、女生各多少名?
(Ⅱ)從這5人中隨即抽取2人完成訪談問(wèn)卷,求2人中恰有1名女生的概率.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com