已知函數(shù)f(x)=loga(1-ax)(0<a<1),若f(x)>1,求x的取值范圍.
考點(diǎn):復(fù)合函數(shù)的單調(diào)性
專題:導(dǎo)數(shù)的概念及應(yīng)用
分析:由真數(shù)大于0求出原函數(shù)的定義域,然后由a的范圍結(jié)合對數(shù)函數(shù)的單調(diào)性轉(zhuǎn)化為一次不等式求出a的范圍,最后取交集得答案.
解答: 解:由1-ax>0,得ax<1,
而a>0,
∴x<
1
a
,即定義域?yàn)椋?∞,
1
a
),
∵0<a<1,
由f(x)>1,得1-ax<a,解得:x
1
a
-1

綜上,x的取值范圍是(
1
a
-1,
1
a
)
點(diǎn)評:本題考查了復(fù)合函數(shù)的單調(diào)性,考查了對數(shù)不等式的解法,關(guān)鍵是注意對數(shù)函數(shù)的定義域,是中檔題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

如圖,正方體ABCD-A′B′C′D′的棱長為4,動(dòng)點(diǎn)E,F(xiàn)在棱AB上,且EF=2,動(dòng)點(diǎn)Q在棱D′C′上,則三棱錐A′-EFQ的體積(  )
A、與點(diǎn)E,F(xiàn)位置有關(guān)
B、與點(diǎn)Q位置有關(guān)
C、與點(diǎn)E,F(xiàn),Q位置有關(guān)
D、與點(diǎn)E,F(xiàn),Q位置均無關(guān),是定值

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)y=lnx+2x-9存在唯一的零點(diǎn)x0,則大于x0的最小整數(shù)是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

計(jì)算:
(1)lg
3
7
+lg70-lg3;
(2)lg22+lg5lg20-1;
(2)lg52+
2
3
lg8+lg5•lg20+(lg2)2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在正四棱錐S-ABCD中,SA=
2
,AB=
3
,其中E、F分別是BC與SD的中點(diǎn).
(1)求證:EF∥平面SAB;
(2)求異面直線EF與SC所成角.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)集合A={x|x≥-2},B={x|x≥3},則A∩∁RB=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知二次函數(shù)f(x)=x2+ax+b(a,b為常數(shù))滿足f(0)=f(2),方程f(x)=2x有兩個(gè)相等的實(shí)數(shù)根.
(1)求函數(shù)f(x)的解析式.
(2)當(dāng)x∈[0,4]時(shí),求函數(shù)f(x)的值域.
(3)當(dāng)m取何值時(shí),函數(shù)g(x)=f(x)+m在[0,4]上有兩個(gè)零點(diǎn).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

函數(shù)f(x)=
1
a-a-1
(ax-a-x)(0<a<1),
(1)求證:f(x)為奇函數(shù);   
(2)當(dāng)x∈(-1,1),解不等式f(1-m)+f(m-2)<0;
(3)若f(x)-4當(dāng)且僅當(dāng)在x∈(-∞,2)上取負(fù)值,求a的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知V1=
△x
t1
,a=
2△x(t1-t2)
t1t2(t1+t2)
,化簡可得V1=V0+a
t1
2
,求V0的表達(dá)式.

查看答案和解析>>

同步練習(xí)冊答案