4.已知an=logn+1(n+2)(n∈N*),觀察下列算式:
a1•a2=log23•log34=$\frac{lg3}{lg2}$•$\frac{lg4}{lg3}$=2;
a1•a2•a3•a4•a5•a6=log23•log34•…•${log}_{{7}^{8}}$=$\frac{lg3}{lg2}$•$\frac{lg4}{lg3}$•…•$\frac{lg8}{lg7}$=3…;
若a1•a2•a3…am=2016(m∈N*),則m的值為22016-2.

分析 根據(jù)已知中的等式,結(jié)合對(duì)數(shù)的運(yùn)算性質(zhì),可得a1•a2•a3•…•${a}_{{2}^{n}-2}$=n(n≥2),進(jìn)而得到答案.

解答 解:∵an=logn+1(n+2)(n∈N*),
∴a1•a2=log23•log34=$\frac{lg3}{lg2}$•$\frac{lg4}{lg3}$=2;
a1•a2•a3•a4•a5•a6=log23•log34•…•${log}_{{7}^{8}}$=$\frac{lg3}{lg2}$•$\frac{lg4}{lg3}$•…•$\frac{lg8}{lg7}$=3;

歸納可得:a1•a2•a3•…•${a}_{{2}^{n}-2}$=n(n≥2),
若a1•a2•a3•…•am=2016,則m=22016-2,
故答案為:22016-2

點(diǎn)評(píng) 歸納推理的一般步驟是:(1)通過觀察個(gè)別情況發(fā)現(xiàn)某些相同性質(zhì);(2)從已知的相同性質(zhì)中推出一個(gè)明確表達(dá)的一般性命題(猜想).

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.下列說法中正確的個(gè)數(shù)為( 。
①若樣本數(shù)據(jù)x1,x2,…,xn的平均數(shù)$\overline x$=5,則樣本數(shù)據(jù)2x1+1,2x2+1,…,2xn+1的平均數(shù)為10
②將一組數(shù)據(jù)中的每個(gè)數(shù)據(jù)都減去同一個(gè)數(shù)后,平均數(shù)與方差均沒有變化
③采用系統(tǒng)抽樣法從某班按學(xué)號(hào)抽取5名同學(xué)參加活動(dòng),學(xué)號(hào)為5,16,27,38,49的同學(xué)均被選出,則該班學(xué)生人數(shù)可能為60.
A.0B.1C.2D.3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.將函數(shù)f(x)=sin($\frac{3π}{2}$+x)(cosx-2sinx)+sin2x的圖象向左平移$\frac{π}{8}$個(gè)單位長度后得到函數(shù)g(x),則g(x)具有性質(zhì)(  )
A.在(0,$\frac{π}{4}}$)上單調(diào)遞增,為奇函數(shù)B.周期為π,圖象關(guān)于($\frac{π}{4},0}$)對(duì)稱
C.最大值為$\sqrt{2}$,圖象關(guān)于直線x=$\frac{π}{2}$對(duì)稱D.在(-$\frac{π}{2},0}$)上單調(diào)遞增,為偶函數(shù)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

12.已知集合A={x||x|<1},B={x|x2≤2x},則A∩B等于( 。
A.[0,2]B.[-1,1)C.[1,2)D.[0,1)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.函數(shù)y=sinx在區(qū)間[0,2π]上的圖象與x軸的交點(diǎn)個(gè)數(shù)是( 。
A.1B.2C.3D.4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

9.求證:x8-x5+x2-x+1>0.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

16.若關(guān)于x的實(shí)系數(shù)一元二次方程x2+x+a=0與x2+ax+1=0至少有一個(gè)公共的實(shí)數(shù)根,則a=-2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

17.已知正四棱錐S-ABCD的側(cè)棱長為2,側(cè)面積為$2\sqrt{15}$,則其外接球的體積為$\frac{32π}{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

18.已知數(shù)列{an}滿足a1=$\frac{3}{2}$且an=$\frac{{3n{a_{n-1}}}}{{2{a_{n-1}}+n-1}}\begin{array}{l}{\;}$ (n∈N,n≥2).
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)求證:當(dāng)n≥2時(shí),$\frac{a_1}{1}$+$\frac{a_2}{2}$+$\frac{a_3}{3}$+…+$\frac{a_n}{n}$-n<$\frac{11}{16}$.

查看答案和解析>>

同步練習(xí)冊(cè)答案