(2012•肇慶二模)已知向量
a
=(2cosx,-2)
,
b
=(cosx,
1
2
)
f(x)=
a
b
,x∈R,則f(x)是( 。
分析:先利用向量數(shù)量積運算求得函數(shù)f(x)的解析式,再利用二倍角公式將函數(shù)化簡為y=Acos(ωx+φ)型函數(shù),進而確定其周期和奇偶性
解答:解:∵f(x)=
a
b
=2cos2x-1=cos2x,∴f(-x)=cos(-2x)=cos2x=f(x)
∴函數(shù)f(x)為最小正周期為
2
=π的偶函數(shù)
故選 A
點評:本題主要考查了三角函數(shù)的圖象和性質(zhì),向量數(shù)量積運算,二倍角公式的運用,屬基礎(chǔ)題
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

(2012•肇慶二模)設(shè)z=1-i(i是虛數(shù)單位),則
2
z
+
.
z
=( 。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2012•肇慶二模)曲線f(x)=
1
2
x2
在點(1,
1
2
)
處的切線方程為( 。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2012•肇慶二模)“α是銳角”是“cosα=
1-sin2α
”的(  )

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2012•肇慶二模)直線y=2與曲線y=x2-|x|+a有四個交點,則a的取值范圍是(  )

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2012•肇慶二模)如圖,某測量人員,為了測量西江北岸不能到達的兩點A,B之間的距離,她在西江南岸找到一個點C,從C點可以觀察到點A,B;找到一個點D,從D點可以觀察到點A,C;找到一個點E,從E點可以觀察到點B,C;并測量得到數(shù)據(jù):∠ACD=90°,∠ADC=60°,∠ACB=15°,∠BCE=105°,∠CEB=45°,DC=CE=1(百米).
(1)求△CDE的面積;
(2)求A,B之間的距離.

查看答案和解析>>

同步練習冊答案