【題目】已知函數(shù),.
(1)求 函數(shù)的單調(diào)區(qū)間;
(2)定義:對于函數(shù),若存在,使成立,則稱為函數(shù)的不動點(diǎn). 如果函數(shù)存在兩個不同的不動點(diǎn),求實(shí)數(shù)的取值范圍.
【答案】(1)當(dāng)時,的單調(diào)遞增區(qū)間為;當(dāng)時,的單調(diào)遞增區(qū)間為,單調(diào)遞減區(qū)間為 ;(2).
【解析】
(1)先確定函數(shù)的定義域,再求導(dǎo),討論的取值,得到函數(shù)的單調(diào)區(qū)間;
(2)依題意可得,存在兩個不動點(diǎn),所以方程有兩個實(shí)數(shù)根,即有兩個解, 令,利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性、極值,即可求出參數(shù)的取值范圍;
解:(1)的定義域?yàn)?/span>,
對于函數(shù),
①當(dāng)時,在恒成立.
在恒成立.
在為增函數(shù);
② 當(dāng)時,由,得;
由,得;
在為增函數(shù),在減函數(shù).
綜上,當(dāng)時,的單調(diào)遞增區(qū)間為
當(dāng)時,的單調(diào)遞增區(qū)間為,單調(diào)遞減區(qū)間為
(2),
存在兩個不動點(diǎn),方程有兩個實(shí)數(shù)根,即有兩個解,
令,,
令,得,
當(dāng)時,單調(diào)遞減;
當(dāng)時,單調(diào)遞增;
,
設(shè),則,,即時,
將兩邊取指數(shù),則
當(dāng)時,
當(dāng)時 ,
當(dāng)時,有兩個不同的不動點(diǎn)
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】農(nóng)歷五月初五是端午節(jié),民間有吃粽子的習(xí)慣,粽子又稱粽籺,俗稱“粽子”,古稱“角黍”,是端午節(jié)大家都會品嘗的食品,傳說這是為了紀(jì)念戰(zhàn)國時期楚國大臣、愛國主義詩人屈原.如圖,平行四邊形形狀的紙片是由六個邊長為的正三角形構(gòu)成的,將它沿虛線折起來,可以得到如圖所示粽子形狀的六面體,則該六面體的體積為____;若該六面體內(nèi)有一球,則該球表面積的最大值為____.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知, , .
(1)若是的充分不必要條件,求實(shí)數(shù)的取值范圍;
(2)若,“”為真命題,“”為假命題,求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)
(1)討論函數(shù)的單調(diào)性;
(2)若函數(shù)與的圖象有兩個不同的交點(diǎn)
(i)求實(shí)數(shù)a的取值范圍
(ii)求證:且為自然對數(shù)的底數(shù)).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知().
(1)討論的單調(diào)性;
(2)當(dāng)時,對任意的,,且,都有,求實(shí)數(shù)m的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】閏月年指農(nóng)歷里有閏月的年份,比如2020年是閏月年,4月23日至5月22日為農(nóng)歷四月,5月23日至6月20日為農(nóng)歷閏四月.農(nóng)歷置閏月是為了農(nóng)歷年的平均長度接近回歸年:農(nóng)歷年中的朔望月的平均長度為29.5306日,日,回歸年的總長度為365.2422日,兩者相差10.875日.因此,每19年相差206.625日,約等于7個朔望月.這樣每19年就有7個閏月年.以下是1640年至1694年間所有的閏月年:
1640 | 1642 | 1645 | 1648 | 1651 | 1653 | 1656 |
1659 | 1661 | 1664 | 1667 | 1670 | 1672 | 1675 |
1678 | 1680 | 1 683 | 1686 | 1689 | 1691 | 1694 |
則從2020年至2049年,這30年間閏月年的個數(shù)為( )
A.10B.11C.12D.13
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知點(diǎn)F為橢圓的右焦點(diǎn),點(diǎn)A為橢圓的右頂點(diǎn).
(1)求過點(diǎn)F、A且和直線相切的圓C的方程;
(2)過點(diǎn)F任作一條不與軸重合的直線,直線與橢圓交于P,Q兩點(diǎn),直線PA,QA分別與直線相交于點(diǎn)M,N.試證明:以線段MN為直徑的圓恒過點(diǎn)F.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知圓的圓心為,點(diǎn)是圓內(nèi)一個定點(diǎn),點(diǎn)是圓上任意一點(diǎn),線段的垂直平分線與半徑相交于點(diǎn).
(1)求動點(diǎn)的軌跡的方程;
(2)給定點(diǎn),設(shè)直線不經(jīng)過點(diǎn)且與軌跡相交于,兩點(diǎn),以線段為直徑的圓過點(diǎn).證明:直線過定點(diǎn).
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com