【題目】已知集合A={x|2a+1≤x≤3a-5},B={x|x<-1,或x>16},分別根據(jù)下列條件求實(shí)數(shù)a的取值范圍.
(1)A∩B=;(2)A(A∩B).
【答案】(1){a|a≤7};(2){a|a<6或a>}
【解析】
(1)根據(jù)A∩B=,可得-1≤2a+1≤x≤3a-5≤16,解不等式可得a的取值范圍;
(2)由A(A∩B)得AB,分類討論,A=與A≠,分別建立不等式,即可求實(shí)數(shù)a的取值范圍
(1)若A=,則A∩B=成立.
此時(shí)2a+1>3a-5,
即a<6.
若A≠,則解得6≤a≤7.
綜上,滿足條件A∩B=的實(shí)數(shù)a的取值范圍是{a|a≤7}.
(2)因?yàn)?/span>A(A∩B),且(A∩B)A,
所以A∩B=A,即AB.
顯然A=滿足條件,此時(shí)a<6.
若A≠,則或
由解得a∈;由解得a>.
綜上,滿足條件A(A∩B)的實(shí)數(shù)a的取值范圍是{a|a<6或a>}.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)對(duì)任意實(shí)數(shù)恒有且當(dāng),,又.
(1)判斷的奇偶性;
(2)求在區(qū)間上的最大值;
(3)解關(guān)于的不等式.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知點(diǎn),,圓是以的中點(diǎn)為圓心,為半徑的圓.
(1)若圓的切線在軸和軸上截距相等,求切線方程;
(2)若是圓外一點(diǎn),從向圓引切線,為切點(diǎn),為坐標(biāo)原點(diǎn),,求使最小的點(diǎn)的坐標(biāo).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】函數(shù)同時(shí)滿足下列兩個(gè)條件:
①圖象最值點(diǎn)與左右相鄰的兩個(gè)對(duì)稱中心構(gòu)成等腰直角三角形
②是的一個(gè)對(duì)稱中心.
(1)當(dāng)時(shí),求函數(shù)的單調(diào)遞增區(qū)間;
(2)設(shè),若對(duì)任意,總是存在,使得,求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知中,,P為線段AC上任意一點(diǎn),則的范圍是( )
A. [1,4] B. [0,4] C. [-2,4] D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】下列說法中,錯(cuò)誤的是( )
A.一條直線與兩個(gè)平行平面中的一個(gè)平面相交,則必與另一個(gè)平面相交
B.平行于同一個(gè)平面的兩個(gè)不同平面平行
C.若直線l與平面平行,則過平面內(nèi)一點(diǎn)且與直線l平行的直線在平面內(nèi)
D.若直線l不平行于平面,則在平面內(nèi)不存在與l平行的直線
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】電視傳媒公司為了解某地區(qū)觀眾對(duì)某類休育節(jié)目的收視情況,隨機(jī)抽取了100名觀眾進(jìn)行調(diào)查,其中女性有55名.下面是根據(jù)調(diào)查結(jié)果繪制的觀眾日均收看該體育節(jié)目時(shí)間的頻率分布直方圖:
將日均收看該體育節(jié)目時(shí)間不低于40分鐘的觀眾稱為“體育迷”,已知“體育迷”中有10名女性.
(1)根據(jù)已知條件完成下面的列聯(lián)表,并據(jù)此資料判斷是否有的把握認(rèn)為“體育迷”與性別有關(guān)?
非體育迷 | 體育迷 | 合計(jì) | |
男 | |||
女 | |||
合計(jì) |
(2)將日均收看讀體育節(jié)目不低于50分鐘的觀眾稱為“超級(jí)體育迷”,已知“超級(jí)體育迷”中有2名女性,若從“超級(jí)體育迷”中任意選取2人,求至少有1名女性觀眾的概率.
附.
0.05 | 0.01 | |
3.841 | 6.635 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知.
(1)當(dāng)時(shí),的值域是,試求實(shí)數(shù)的值;
(2)設(shè)關(guān)于的方程的兩個(gè)實(shí)根為;試問:是否存在實(shí)數(shù),使得不等式對(duì)任意及恒成立?若存在,求實(shí)數(shù)的取值范圍;若不存在,請(qǐng)說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù),且.
(1)求f(x)的解析式;
(2)判斷f(x)在區(qū)間(0,1)上的單調(diào)性,并用定義法證明.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com