【題目】設m,n∈R,定義在區(qū)間[m,n]上的函數(shù)f(x)=log2(4﹣|x|)的值域是[0,2],若關于t的方程( )|t|+m+1=0(t∈R)有實數(shù)解,則m+n的取值范圍是 .
【答案】[1,2)
【解析】解:∵函數(shù)f(x)=log2(4﹣|x|)的值域是[0,2],
∴1≤4﹣|x|≤4,
∴0≤|x|≤3,
∴m=﹣3,0≤n≤3,或﹣3≤m≤0,n=3;
又∵關于t的方程( )|t|+m+1=0(t∈R)有實數(shù)解,
∴m=﹣(( )|t|+1),
∵1<( )|t|+m+1≤2,
∴﹣2≤m<﹣1,
則n=3,
則1≤m+n<2,
即答案為:[1,2).
由函數(shù)f(x)=log2(4﹣|x|)的值域是[0,2],可解得m=﹣3,0≤n≤3,或﹣3≤m≤0,n=3;又由關于t的方程( )|t|+m+1=0(t∈R)有實數(shù)解可解得﹣2≤m<﹣1,則n=3,從而求m+n的取值范圍.
科目:高中數(shù)學 來源: 題型:
【題目】如圖1,在直角梯形ABCD中,∠ADC=90°,CD∥AB,AB=4,AD=CD=2.將△ADC沿AC折起,使平面ADC⊥平面ABC,得到幾何體D﹣ABC,如圖2所示.
(1)求證:BC⊥平面ACD;
(2)求幾何體D﹣ABC的體積.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】直三棱柱ABC﹣A1B1C1中,AB⊥AC,AB=2,AC=4,AA1=2,D為BC的中點.則直線DB1與平面A1C1D所成角的正弦值 .
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,在四棱錐P﹣ABCD中,PA⊥平面ABCD,AD∥BC,AB⊥AD,BC= ,AB=1,BD=PA=2,M 為PD的中點.
(1)求異面直線BD與PC所成角的余弦值;
(2)求二面角A﹣MC﹣D的平面角的余弦值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知復數(shù)z1滿足(z1﹣2)(1+i)=1﹣i(i為虛數(shù)單位),復數(shù)z2的虛部為2,且z1z2是實數(shù),
(1)求z1;
(2)求z2 .
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】為了調查某地區(qū)老年人是否需要志愿者提供幫助,用簡單隨機抽樣方法從該地區(qū)調查了500位老年人,結果如下:
男 | 女 | 總計 | |
需要幫助 | 40 | m | 70 |
不需要幫助 | n | 270 | s |
總計 | 200 | t | 500 |
(1)求m,n,s,t的值;
(2)估計該地區(qū)老年人中,需要志愿者提供幫助的比例;
(3)能否有99%的把握認為該地區(qū)的老年人是否需要志愿者幫助與性別有關.
參考公式:
隨機變量K2= ,n=a+b+c+d
在2×2列聯(lián)表:
y1 | y2 | 總計 | |
x1 | a | b | a+b |
x2 | c | d | c+d |
總計 | a+c | b+d | a+b+c+d |
P(K2≥k0) | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 |
k0 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某班級體育課舉行了一次“投籃比賽”活動,為了了解本次投籃比賽學生總體情況,從中抽取了甲乙兩個小組樣本分數(shù)的莖葉圖如圖所示.
(1)分別求出甲乙兩個小組成績的平均數(shù)與方差,并判斷哪一個小組的成績更穩(wěn)定:
(2)從甲組成績不低于60分的同學中,任意抽取3名同學,設表示所抽取的3名同學中得分在的學生個數(shù),求的分布列及其數(shù)學期望.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com