若f(x)=(m-1)x2+2mx+3是偶函數(shù),則f(x)在區(qū)間(-3,1)上


  1. A.
    單調(diào)遞增
  2. B.
    單調(diào)遞減
  3. C.
    先增后減
  4. D.
    先減后增
C
分析:f(x)=(m-1)x2+2mx+3若為偶函數(shù),則表達(dá)式中顯然不能含有一次項(xiàng)2mx,故m=0.此題還需要對(duì)該函數(shù)是否是二次函數(shù)進(jìn)行討論.
解答:(1)若m=1,則函數(shù)f(x)=2x+3,則f(-x)=-2x+3≠f(x),此時(shí)函數(shù)不是偶函數(shù),所以m≠1
(2)若m≠1,且函數(shù)f(x)=(m-1)x2+2mx+3是偶函數(shù),
則 一次項(xiàng)2mx=0恒成立,則 m=0,
因此,函數(shù)為 f(x)=-x2+3,
此函數(shù)圖象是開口向下,以y軸為對(duì)稱軸二次函數(shù)圖象.
所以,函數(shù)在區(qū)間(-3,1)的單調(diào)性是先增后減.
點(diǎn)評(píng):函數(shù)奇偶性定義中f(-x)=f(x)(或f(-x)=-f(x)),包含兩層意義:
一是x與-x都使函數(shù)有意義,則定義域關(guān)于原點(diǎn)對(duì)稱;
二是f(-x)=f(x)圖象關(guān)于y軸對(duì)稱,f(-x)=-f(x)圖象關(guān)于原點(diǎn)對(duì)稱.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)二次函數(shù)f(x)=ax2+bx+c(a,b,c∈R)滿足下列條件:
①當(dāng)x∈R時(shí),f(x)的最小值為0,且圖象關(guān)于直線x=-1對(duì)稱;
②當(dāng)x∈(0,5)時(shí),x≤f(x)≤2|x-1|+1恒成立.
(1)求f(1)的值;
(2)求函數(shù)f(x)的解析式;
(3)若f(x)在區(qū)間[m-1,m]上恒有|f(x)-x|≤1,求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

設(shè)二次函數(shù)f(x)=ax2+bx+c(a,b,c∈R)滿足下列條件:
①當(dāng)x∈R時(shí),f(x)的最小值為0,且圖象關(guān)于直線x=-1對(duì)稱;
②當(dāng)x∈(0,5)時(shí),x≤f(x)≤2|x-1|+1恒成立.
(1)求f(1)的值;
(2)求函數(shù)f(x)的解析式;
(3)若f(x)在區(qū)間[m-1,m]上恒有|f(x)-x|≤1,求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2011-2012學(xué)年江蘇省揚(yáng)州市高一(上)期中數(shù)學(xué)試卷(解析版) 題型:解答題

設(shè)二次函數(shù)f(x)=ax2+bx+c(a,b,c∈R)滿足下列條件:
①當(dāng)x∈R時(shí),f(x)的最小值為0,且圖象關(guān)于直線x=-1對(duì)稱;
②當(dāng)x∈(0,5)時(shí),x≤f(x)≤2|x-1|+1恒成立.
(1)求f(1)的值;
(2)求函數(shù)f(x)的解析式;
(3)若f(x)在區(qū)間[m-1,m]上恒有|f(x)-x|≤1,求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2011-2012學(xué)年福建師大附中高一(上)期中數(shù)學(xué)試卷(解析版) 題型:解答題

設(shè)二次函數(shù)f(x)=ax2+bx+c(a,b,c∈R)滿足下列條件:
①當(dāng)x∈R時(shí),f(x)的最小值為0,且圖象關(guān)于直線x=-1對(duì)稱;
②當(dāng)x∈(0,5)時(shí),x≤f(x)≤2|x-1|+1恒成立.
(1)求f(1)的值;
(2)求函數(shù)f(x)的解析式;
(3)若f(x)在區(qū)間[m-1,m]上恒有|f(x)-x|≤1,求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2011-2012學(xué)年福建師大附中高一(上)期中數(shù)學(xué)試卷(解析版) 題型:解答題

設(shè)二次函數(shù)f(x)=ax2+bx+c(a,b,c∈R)滿足下列條件:
①當(dāng)x∈R時(shí),f(x)的最小值為0,且圖象關(guān)于直線x=-1對(duì)稱;
②當(dāng)x∈(0,5)時(shí),x≤f(x)≤2|x-1|+1恒成立.
(1)求f(1)的值;
(2)求函數(shù)f(x)的解析式;
(3)若f(x)在區(qū)間[m-1,m]上恒有|f(x)-x|≤1,求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

同步練習(xí)冊答案