20.如圖,網(wǎng)格紙上小正方形的邊長為1,粗線畫出的是某幾何體的三視圖,則此幾何體各面直角三角形的個(gè)數(shù)是(  )
A.2B.3C.4D.5

分析 由三視圖可知:該幾何體為四棱錐P-ABCD,側(cè)面PAD⊥底面ABCD,PA⊥AD,底面ABCD是正方形.即可得出.

解答 解:由三視圖可知:該幾何體為四棱錐P-ABCD,側(cè)面PAD⊥底面ABCD,PA⊥AD,底面ABCD是正方形.
則此圖中含有4個(gè)直角三角形(除了底面正方形).
故選:C.

點(diǎn)評 本題考查了四棱錐的三視圖、線面面面垂直的判定與性質(zhì)定理,考查了推理能力與計(jì)算能力,屬于基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

10.已知袋子中放有大小和形狀相同的小球若干,其中標(biāo)號為0的小球1個(gè),標(biāo)號為1的小球1個(gè),標(biāo)號為2的小球n個(gè).若從袋子中隨機(jī)抽取1個(gè)小球,取到標(biāo)號為2的小球的概率是$\frac{1}{2}$.
(1)求n的值;
(2)從袋子中不放回地隨機(jī)抽取2個(gè)小球,記第一次取出的小球標(biāo)號為a,第二次取出的小球標(biāo)號為b.
(i)記“a+b=2”為事件A,求事件A的概率;
(ii)在區(qū)間[0,2]內(nèi)任取2個(gè)實(shí)數(shù)x,y,求事件“x2+y2>(a-b)2恒成立”的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

11.如圖,網(wǎng)格紙上小正方形的邊長為1,實(shí)線畫出的是某多面體的三視圖,則該多面體的體積為( 。
A.20B.22C.24D.26

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

8.若正數(shù)x,y滿足15x-y=22,則x3+y3-x2-y2的最小值為1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

15.以直角坐標(biāo)系的原點(diǎn)O為極點(diǎn),x軸的正半軸為極軸建立極坐標(biāo)系,已知點(diǎn)M的直角坐標(biāo)為(1,0),若直線l的極坐標(biāo)方程為$\sqrt{2}$ρcos(θ+$\frac{π}{4}$)-1=0,曲線C的參數(shù)方程是$\left\{\begin{array}{l}{x=4{t}^{2}}\\{y=4t}\end{array}\right.$(t為參數(shù)).
(1)求直線l和曲線C的普通方程;
(2)設(shè)直線l與曲線C交于A,B兩點(diǎn),求$\frac{1}{|MA|}$+$\frac{1}{|MB|}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.已知正三角形ABC的三個(gè)頂點(diǎn)都在球心為O、半徑為3的球面上,且三棱錐O-ABC的高為2,點(diǎn)D是線段BC的中點(diǎn),過點(diǎn)D作球O的截面,則截面積的最小值為( 。
A.$\frac{15π}{4}$B.C.$\frac{7π}{2}$D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

12.已知一個(gè)幾何體的三視圖如圖所示,則該幾何體的表面積為( 。
A.4$\sqrt{2}$+6B.4$\sqrt{2}$+8C.4$\sqrt{2}$+12D.4$\sqrt{2}$+10

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.三棱錐S-ABC的所有頂點(diǎn)都在球O的表面上,SA⊥平面ABC,AB⊥AC,又SA=AB=AC=1,則球O的表面積為(  )
A.$\frac{{\sqrt{3}}}{2}π$B.$\frac{3}{2}π$C.D.12π

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.在平面區(qū)域$\left\{\begin{array}{l}{x+y-4≤0}\\{x>0}\\{y>0}\end{array}\right.$內(nèi)隨機(jī)取一點(diǎn)(a,b),則函數(shù)f(x)=ax2-4bx+1在區(qū)間[1,+∞)上是增函數(shù)的概率為( 。
A.$\frac{1}{4}$B.$\frac{1}{3}$C.$\frac{1}{2}$D.$\frac{2}{3}$

查看答案和解析>>

同步練習(xí)冊答案