假設(shè)你已經(jīng)學(xué)習(xí)過指數(shù)函數(shù)的基本性質(zhì)和反函數(shù)的概念,但還沒有學(xué)習(xí)過對數(shù)的相關(guān)概念.由指數(shù)函數(shù)f(x)=ax(a>0且a≠1)在實數(shù)集R上是單調(diào)函數(shù),可知指數(shù)函數(shù)f(x)=ax(a>0且a≠1)存在反函數(shù)y=f-1(x),x∈(0,+∞).請你依據(jù)上述假設(shè)和已知,在不涉及對數(shù)的定義和表達(dá)形式的前提下,證明下列命題:
(1)對于任意的正實數(shù)x1,x2,都有f-1(x1x2)=f-1(x1)+f-1(x2)
(2)函數(shù)y=f-1(x)是單調(diào)函數(shù).
證明:(1)設(shè)y1=f-1(x1),y2=f-1(x2)
由題意,有x1=ay1,x2=ay2
x1x2=ay1ay2=ay1+y2,
y1+y2=f-1(x1x2),即f-1(x1x2)=f-1(x1)+f-1(x2).         
(2)當(dāng)a>1時,y=f-1(x)是增函數(shù).
證明:設(shè)x1>x2>0,即ay1>a y2>0,
又由指數(shù)函數(shù)y=ax(a>1)是增函數(shù),得y1>y2,即f-1(x1)>f-1(x2).                                       
∴當(dāng)a>1時,y=f-1(x)是增函數(shù).                              
同理,當(dāng)0<a<1時,y=logax是減函數(shù).
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

(2013•閘北區(qū)一模)假設(shè)你已經(jīng)學(xué)習(xí)過指數(shù)函數(shù)的基本性質(zhì)和反函數(shù)的概念,但還沒有學(xué)習(xí)過對數(shù)的相關(guān)概念.由指數(shù)函數(shù)f(x)=ax(a>0且a≠1)在實數(shù)集R上是單調(diào)函數(shù),可知指數(shù)函數(shù)f(x)=ax(a>0且a≠1)存在反函數(shù)y=f-1(x),x∈(0,+∞).請你依據(jù)上述假設(shè)和已知,在不涉及對數(shù)的定義和表達(dá)形式的前提下,證明下列命題:
(1)對于任意的正實數(shù)x1,x2,都有f-1(x1x2)=f-1(x1)+f-1(x2);
(2)函數(shù)y=f-1(x)是單調(diào)函數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

假設(shè)你已經(jīng)學(xué)習(xí)過指數(shù)函數(shù)的基本性質(zhì)和反函數(shù)的概念,但還沒有學(xué)習(xí)過對數(shù)的相關(guān)概念.由指數(shù)函數(shù)f(x)=ax(a>0且a≠1)在實數(shù)集R上是單調(diào)函數(shù),可知指數(shù)函數(shù)f(x)=ax(a>0且a≠1)存在反函數(shù)y=f-1(x),x∈(0,+∞).請你依據(jù)上述假設(shè)和已知,在不涉及對數(shù)的定義和表達(dá)形式的前提下,證明下列命題:
(1)對于任意的正實數(shù)x1,x2,都有f-1(x1x2)=數(shù)學(xué)公式
(2)函數(shù)y=f-1(x)是單調(diào)函數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2013年上海市閘北區(qū)高考數(shù)學(xué)一模試卷(理科)(解析版) 題型:解答題

假設(shè)你已經(jīng)學(xué)習(xí)過指數(shù)函數(shù)的基本性質(zhì)和反函數(shù)的概念,但還沒有學(xué)習(xí)過對數(shù)的相關(guān)概念.由指數(shù)函數(shù)f(x)=ax(a>0且a≠1)在實數(shù)集R上是單調(diào)函數(shù),可知指數(shù)函數(shù)f(x)=ax(a>0且a≠1)存在反函數(shù)y=f-1(x),x∈(0,+∞).請你依據(jù)上述假設(shè)和已知,在不涉及對數(shù)的定義和表達(dá)形式的前提下,證明下列命題:
(1)對于任意的正實數(shù)x1,x2,都有f-1(x1x2)=
(2)函數(shù)y=f-1(x)是單調(diào)函數(shù).

查看答案和解析>>

同步練習(xí)冊答案