已知數(shù)列{an}滿足:a1=
1
2
,an+1=
n+1
2n
an,數(shù)列{bn}滿足nbn=an(n∈N*).
(1)證明數(shù)列{bn}是等比數(shù)列,并求其通項公式:
(2)求數(shù)列{an}的前n項和Sn
分析:(1)根據(jù)等比數(shù)列的定義證明數(shù)列是等比數(shù)列,求出首項和公比即可求等比數(shù)列的通項公式.
(2)由(1)可得an=nbn=
n
2n
.利用“錯位相減法”即可得到Sn
解答:(1)證明:∵數(shù)列{bn}滿足nbn=an(n∈N*),得bn=
an
n

由an+1=
n+1
2n
an,可得
an+1
n+1
=
1
2
an
n
,∴bn+1=
1
2
bn

b1=a1=
1
2
,∴數(shù)列{bn}是等比數(shù)列,首項為
1
2
,公比為
1
2

bn=
1
2
×(
1
2
)n-1
=(
1
2
)n

(2)解:由(1)可得an=nbn=
n
2n

∴Sn=
1
2
+
2
22
+
3
23
+…+
n
2n
,
1
2
Sn=
1
22
+
2
23
+…+
n-1
2n
+
n
2n+1
,
1
2
Sn
=
1
2
+
1
22
+…+
1
2n
-
n
2n+1
=
1
2
(1-
1
2n
)
1-
1
2
-
n
2n+1
=1-
1
2n
-
n
2n+1

∴Sn=2-
2+n
2n
點評:本題考查了等比數(shù)列的通項公式及其前n項和公式、“錯位相減法”等基礎(chǔ)知識與基本技能方法,屬于中檔題.
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

已知數(shù)列{an}滿足:a1=1且an+1=
3+4an
12-4an
, n∈N*

(1)若數(shù)列{bn}滿足:bn=
1
an-
1
2
(n∈N*)
,試證明數(shù)列bn-1是等比數(shù)列;
(2)求數(shù)列{anbn}的前n項和Sn;
(3)數(shù)列{an-bn}是否存在最大項,如果存在求出,若不存在說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知數(shù)列{an}滿足
1
2
a1+
1
22
a2+
1
23
a3+…+
1
2n
an=2n+1
則{an}的通項公式
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知數(shù)列{an}滿足:a1=
3
2
,且an=
3nan-1
2an-1+n-1
(n≥2,n∈N*).
(1)求數(shù)列{an}的通項公式;
(2)證明:對于一切正整數(shù)n,不等式a1•a2•…an<2•n!

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知數(shù)列{an}滿足an+1=|an-1|(n∈N*
(1)若a1=
54
,求an;
(2)若a1=a∈(k,k+1),(k∈N*),求{an}的前3k項的和S3k(用k,a表示)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2012•北京模擬)已知數(shù)列{an}滿足an+1=an+2,且a1=1,那么它的通項公式an等于
2n-1
2n-1

查看答案和解析>>

同步練習冊答案