【題目】某藝術品公司欲生產(chǎn)一款迎新春工藝禮品,該禮品是由玻璃球面和該球的內(nèi)接圓錐組成,圓錐的側面用于藝術裝飾,如圖1.為了便于設計,可將該禮品看成是由圓及其內(nèi)接等腰三角形繞底邊上的高所在直線旋轉180°而成,如圖2.已知圓的半徑為,設,圓錐的側面積為.

(1)求關于的函數(shù)關系式;

(2)為了達到最佳觀賞效果,要求圓錐的側面積最大.求取得最大值時腰的長度.

【答案】(1) ,(2)側面積取得最大值時,等腰三角形的腰的長度為

【解析】試題分析:(1)由條件,,,所以S,;(2),所以得,通過求導分析,得時取得極大值,也是最大值。

試題解析:

(1)設于點,過,垂足為,

中,,

中,,

所以S,

(2)要使側面積最大,由(1)得:

,所以得,

得:

時,,當時,

所以在區(qū)間上單調(diào)遞增,在區(qū)間上單調(diào)遞減,

所以時取得極大值,也是最大值;

所以當時,側面積取得最大值,

此時等腰三角形的腰長

答:側面積取得最大值時,等腰三角形的腰的長度為

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)是定義在上的奇函數(shù),滿足,當時,有.

1)求實數(shù)的值;

2)求函數(shù)在區(qū)間上的解析式,并利用定義證明證明其在該區(qū)間上的單調(diào)性;

3)解關于的不等式.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在等差數(shù)列中,,且前7項和.

(1)求數(shù)列的通項公式;

(2),求數(shù)列的前項和.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知在,,.

(1)求角的大小;

(2)設數(shù)列滿足,項和為,的值.

【答案】(1);(2).

【解析】試題分析:

(1)由題意結合三角形內(nèi)角和為可得.由余弦定理可得,,結合勾股定理可知為直角三角形,.

(2)結合(1)中的結論可得 . ,據(jù)此可得關于實數(shù)k的方程解方程可得.

試題解析:

(1)由已知,又,所以.又由,

所以,所以,

所以為直角三角形,,.

(2) .

所以 ,,得

,所以,所以,所以.

型】解答
束】
18

【題目】已知點是平行四邊形所在平面外一點,如果,.(1)求證:是平面的法向量

(2)求平行四邊形的面積.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】(1)求圓心在直線,且與直線相切于點的圓的方程;

(2)求與圓外切于點且半徑為的圓的方程.

【答案】(1);(2).

【解析】試題分析:

(1)由題意可得圓的一條直徑所在的直線方程為,據(jù)此可得圓心,半徑,則所求圓的方程為.

(2)圓的標準方程為,得該圓圓心為,半徑為,兩圓連心線斜率.設所求圓心為,結合弦長公式可得,.則圓的方程為.

試題解析:

(1)過點且與直線垂直的直線為

.

即圓心,半徑,

所求圓的方程為.

(2)圓方程化為,得該圓圓心為,半徑為,故兩圓連心線斜率.設所求圓心為,

,,

,.

.

點睛:求圓的方程,主要有兩種方法:

(1)幾何法:具體過程中要用到初中有關圓的一些常用性質(zhì)和定理.如:①圓心在過切點且與切線垂直的直線上;②圓心在任意弦的中垂線上;③兩圓相切時,切點與兩圓心三點共線.

(2)待定系數(shù)法:根據(jù)條件設出圓的方程,再由題目給出的條件,列出等式,求出相關量.一般地,與圓心和半徑有關,選擇標準式,否則,選擇一般式.不論是哪種形式,都要確定三個獨立參數(shù),所以應該有三個獨立等式.

型】解答
束】
20

【題目】如圖所示,平面,在以為直徑的,,,為線段的中點,在弧,.

(1)求證:平面平面;

(2)求證:平面平面;

(3)設二面角的大小為,的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】小張經(jīng)營某一消費品專賣店,已知該消費品的進價為每件40元,該店每月銷售量(百件)與銷售單價x(元/件)之間的關系用下圖的一折線表示,職工每人每月工資為1000元,該店還應交付的其它費用為每月10000元.

(1)把y表示為x的函數(shù);

(2)當銷售價為每件50元時,該店正好收支平衡(即利潤為零),求該店的職工人數(shù);

(3)若該店只有20名職工,問銷售單價定為多少元時,該專賣店可獲得最大月利潤?(注:利潤=收入-支出)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知公差不為零的等差數(shù)列滿足,且成等比數(shù)列.

(1)求數(shù)列的通項公式;

(2)設,求數(shù)列的前項和.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】(本小題滿分12分)已知函數(shù).

時,證明:;

,若,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某廠家為了了解一款產(chǎn)品的質(zhì)量,隨機抽取200名男性使用者和100名女性使用者,對該款產(chǎn)品進行評分,繪制出如下頻率分布直方圖.

(1)利用組中值(數(shù)據(jù)分組后,一個小組的組中值是指這個小組的兩個端點的數(shù)的平均數(shù)),估計100名女性使用者評分的平均值;

(2)根據(jù)評分的不同,運用分層抽樣從這200名男性中抽取20名,在這20名中,從評分不低于80分的人中任意抽取3名,求這3名男性中恰有一名評分在區(qū)間的概率.

查看答案和解析>>

同步練習冊答案