9.值域為((0,+∞)的函數(shù)是( 。
A.$y={5^{\frac{1}{2-x}}}$B.$y={({\frac{1}{3}})^{1-x}}$C.$y=\sqrt{1-{2^x}}$D.$y=\sqrt{{{(\frac{1}{2})}^x}-1}$

分析 首先求出各選項定義域,利用換元法求函數(shù)的值域即可.

解答 解:A:函數(shù)定義域為{x|x≠2},令t=$\frac{1}{2-x}$∈(-∞,0)∪(0,+∞),則y=5t∈(0,1)∪(1,+∞),不符合題意;
B:函數(shù)定義域為R,令t=1-x∈R,則y=$(\frac{1}{3})^{t}$∈(0,+∞),滿足題意;
C:函數(shù)定義域為(-∞,0],令t=1-2x∈[0,1),則y=$\sqrt{t}$∈[0,1),不滿足題意;
D:函數(shù)定義域為(-∞,0],令t=$(\frac{1}{2})^{x}$-1∈[0,+∞),則y=$\sqrt{t}$∈[0,+∞),不滿足題意;
故選:B

點評 本題主要考查了函數(shù)的基本性質,以及利用換元法求函數(shù)值域的知識點,屬基礎題.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:填空題

19.在△ABC中,內角A,B,C的對邊分別是a,b,c,若bsinB-asinA=$\frac{3}{2}$asinC,且△ABC的面積為a2sinB,則cosB=$\frac{1}{4}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

20.已知函數(shù)f(x)=$\frac{{{{(x+1)}^2}+asinx}}{{{x^2}+1}}$+3(a∈R),f(ln(log25))=5,則f(ln(log52))=(  )
A.-5B.-1C.3D.4

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

17.設f(x)=x2-2ax+2a.
(1)若函數(shù)f(x)在區(qū)間[1,2]上的最小值是-3,求a的值;
(2)若不等式f(x)>0對于任意的x∈[-2,-1]恒成立,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

4.設函數(shù)f(x)=-x(x-a)2(x∈R),其中a∈R.
(Ⅰ)當a=1時,求曲線y=f(x)在點(2,f(2))處的切線方程;
(Ⅱ)當a≠0時,求函數(shù)f(x)的極大值和極小值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

14.已知函數(shù)$y=\left\{\begin{array}{l}x+4,x≤0\\{x^2}-2x,0<x≤4\\-x+2,x>4\end{array}\right.$.
(1)求f(f(5))的值;
(2)畫出函數(shù)的圖象.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

1.$({x+\frac{a}{x}}){({2x-\frac{1}{x}})^5}$展開式中,各項系數(shù)之和為3,則展開式中的常數(shù)項為( 。
A.-120B.-80C.80D.120

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

18.A={0,1,x2-5x},-4∈A,則實數(shù)x的值為1或4.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

19.函數(shù)f(x)=x2+lgx-3的一個零點所在區(qū)間為( 。
A.$(0,\frac{1}{2})$B.$(\frac{1}{2},1)$C.$(1,\frac{3}{2})$D.$(\frac{3}{2},2)$

查看答案和解析>>

同步練習冊答案