如圖,在△ABC中,MN∥BC,MN=1cm,BC=3cm求AM的長(zhǎng).
精英家教網(wǎng)
分析:由MN∥BC,因此可以用平行線分線段成比例定理建立已知量與未知量之間的關(guān)系式,解方程進(jìn)行求解.
解答:解:設(shè)AM為x,
∵M(jìn)N∥BC
∴△AMN∽△ABC
AM
AB
=
MN
BC
,
x
x+2
=
1
3

x=1(cm).
點(diǎn)評(píng):如果題目的已知有平行關(guān)系,平行線分線段成比例定理建立已知量與未知量之間的關(guān)系是首選,也可利用平行得到相關(guān)三角形相似,再利用相似三角形的性質(zhì)建立知量與未知量之間的關(guān)系.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)如圖,在△ABC中,已知∠ABC=90°,AB上一點(diǎn)E,以BE為直徑的⊙O恰與AC相切于點(diǎn)D,若AE=2cm,
AD=4cm.
(1)求:⊙O的直徑BE的長(zhǎng);
(2)計(jì)算:△ABC的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)如圖,在△ABC中,D是邊AC上的點(diǎn),且AB=AD,2AB=
3
BD,BC=2BD,則sinC的值為( 。
A、
3
3
B、
3
6
C、
6
3
D、
6
6

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖,在△ABC中,設(shè)
AB
=a
,
AC
=b
,AP的中點(diǎn)為Q,BQ的中點(diǎn)為R,CR的中點(diǎn)恰為P.
(Ⅰ)若
AP
=λa+μb
,求λ和μ的值;
(Ⅱ)以AB,AC為鄰邊,AP為對(duì)角線,作平行四邊形ANPM,求平行四邊形ANPM和三角形ABC的面積之比
S平行四邊形ANPM
S△ABC

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖,在△ABC中,∠B=45°,D是BC邊上的一點(diǎn),AD=5,AC=7,DC=3.
(1)求∠ADC的大;
(2)求AB的長(zhǎng).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖,在△ABC中,已知
BD
=2
DC
,則
AD
=(  )

查看答案和解析>>

同步練習(xí)冊(cè)答案